DOI QR코드

DOI QR Code

Elastic Wave Characteristics in Cemented Engineered Soils

고결된 Engineered Soils의 탄성파 특성

  • Lee, Chang-Ho (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Yoon, Hyung-Koo (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Woo-Jin (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.) ;
  • Lee, Jong-Sub (Dept. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 이창호 (고려대학교 건축.사회환경공학과) ;
  • 윤형구 (고려대학교 건축.사회환경공학과) ;
  • 이우진 (고려대학교 건축.사회환경공학과) ;
  • 이종섭 (고려대학교 건축.사회환경공학과)
  • Published : 2008.02.29

Abstract

Behaviors of cemented engineered soils, composed of rigid sand particle and soft rubber particle, are investigated under $K_o$ condition. The uncemented and cemented specimens are prepared with various sand volume fractions to estimate the effect of the cementation in mixtures. The vertical deformation and elastic wave velocities with vertical stress are measured. The bender elements and PZT sensors are used to measure elastic wave velocities. After cementation, the slope of vertical strain shows bilinear and is similar to that of uncemented specimen after decementation. Normalized vertical strains can be divided into capillary force, cementation, and decementation region. The first deflection of the shear wave in near field matches the first arrival of the primary wave. The elastic wave velocities dramatically increase due to cementation hardening under the fixed vertical stress, and are almost identical with additional stress. After decementation, the elastic wave velocities increase with increase in the vertical stress. The effect of cementation hinders the typical rubber-like, sand-like, and transition behaviors observed in uncemented specimens. Different mechanism can be expected in decementation of the rigid-soft particle mixtures due to the sand fraction. a shape change of individual particles in low sand fraction specimens; a fabric change between particles in high sand fraction specimens. This study suggests that behaviors of cemented engineered soils, composed of rigid-soft particles, are distinguished due to the cementation and decementation from those of uncemented specimens.

단단한 모래 입자와 연약한 고무 입자로 이루어진 Engineered soils을 고결화 시킨 후 $K_o$ 상태에서의 거동 특성을 분석하였다. 고결화 효과에 따른 영향 및 모래부피비에 따른 영향을 파악하기 위하여 다양한 모래부피비를 가지는 비고결화 및 고결화 시료를 준비하여, 수직 응력에 따른 변형 및 탄성파 속도를 측정하였다. 탄성파 속도 측정은 벤더 엘리먼트와 PZT 엘리먼트를 이용하였다. 고결화 이 후 응력에 따른 수직 변형율의 기울기는 이중 선형 관계를 보이며 고결화 결합 파괴 이후에는 비고결화 시료와 비슷한 기울기를 가진다. 정규화된 수직 변형량은 응력에 따라 capillary force, cementation, decementation 구간으로 나눌 수 있다. 근접장 내에서 측정된 전단파 신호의 첫 번째 움직임은 압축파의 도달과 일치하였다. 고결화에 의해 탄성파 속도는 수직 응력의 증가 없이 급격한 증가를 보였으며, 고결화 이후 추가적인 응력 증가에도 일정한 값을 보였다. 고결화 파괴 후 지속적인 수직 응력의 증가에 따라 탄성파속도는 증가하였다. 고결화는 비고결화 시료에서 나타나는 유사고무, 유사모래, 전이 3가지의 거동을 방해한다. 고무-모래 혼합재의 고결화 결합의 파괴 메커니즘은 모래부피비에 따라 다르며 낮은 모래부피비의 시료는 입자 모양의 변화가, 높은 모래부피비 시료에서는 입자 구조의 변화가 고결화 결합의 파괴가 주요한 원인이다. 본 연구를 통해 연약한 고무 입자와 단단한 모래 입자의 혼합재인 Engineered soils의 거동은 고결화 및 고결화 파괴에 따라 비고결화 시료와 구분됨을 알 수 있었다.

Keywords

References

  1. Acar, Y. B. and El-Tahir, A. (1986). 'Low strain dynamic properties of artificially cemented sand.' J. Geotech. Eng., 112(11), 1001-1015 https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
  2. Ahmed, I. and Lovell, C. W. (1993). 'Rubber soils as light weight geomaterials.' Transportation research record 1422. Transportation Research Board, 61-70
  3. Airey, D. W. (1993). 'Triaxial testing of naturally cemented carbonate soil.' J. Geotech. Geoenviron. Eng., 119(9), 1379-1398 https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1379)
  4. Baig, S., Picornell, M., and Nazarian, S. (1997). 'Low strain shear moduli of cemented sands.' J. Geotech. Geoenviron. Eng., 123(6), 540-545 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(540)
  5. Bosscher, P. J., Edil, T. B., and Kuraoka, S. (1997). 'Design of highway embankments using tire chips.' J. Geotech. Geoenviron. Eng., 123(4), 295-304 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(295)
  6. Clough, G. W., Rad, N. S., Bachus, R.C., and Sitar, N. (1981). 'Cemented sands under static loading.' J. Geotech. Eng. Div. Am. Soc. Civ. Eng., 107(6), 799-817
  7. Coop, M. R. and Atkinson, J. H. (1993). 'The mechanics of cemented carbonate sands.' Geotechnique, 43(1), 53-67 https://doi.org/10.1680/geot.1993.43.1.53
  8. Dass, R. N., Yen, S. S., Das, B. M., Puri, V. K., and Wright, M. A. (1994). 'Tensile stress-strain characteristics of lightly cemented sand.' Geotech. Test. J., 17(3), 305-314 https://doi.org/10.1520/GTJ10105J
  9. Dyvik, R. and Madshus, C. (1985). 'Lab measurements of Gmax using bender element.' Proc. ASCE convention on Advances in the art of testing soils under cyclic conditions, 186-196
  10. Feng, Z. Y. and Sutter, K. G. (2000). 'Dynamic properties of granulated rubber sand mixtures.' Geotech. Test. J., 23(3), 338-344 https://doi.org/10.1520/GTJ11055J
  11. Fernandez, A. L. and Santamarina, J. C. (2001). 'Effect of cementation on the small-strain parameters of sands.' Can. Geotech. J., 38(1). 191-199 https://doi.org/10.1139/cgj-38-1-191
  12. Garga, V. K. and O'Shaughnessy, V. (2000). 'Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design.' Can. Geotech. J., 37(1). 75-96 https://doi.org/10.1139/cgj-37-1-75
  13. Eleazer, W. E. and Barlaz, M. A. (1992). 'Technologies for Utilization of Waste Tires in Asphalt Pavement.' Proc. Utilization of Waste Materials in Civil Engineering Construction, ASCE, New York, NY, September 13-17, 193-201
  14. Ismail, M. A., Joer, H. A., Sim, W. H., and Randolph, M. F. (2002). 'Effect of cement type on shear behavior of cemented calcareous soil.' J. Geotech. Geoenviron. Eng., 128(6), 520-529 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(520)
  15. Lee, J. H., Salgado R., Bernal, A., and Lovell, C. W. (1999). 'Shredded tires and rubber-sand as lightweight backfill.' J. Geotech. Geoenviron. Eng., 125(2), 132-141 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  16. Lee, J. S. and Santamarina, J. C. (2005). 'Bender elements: performance and signal interpretation.' J. Geotech. Geoenviron. Eng., ASCE, 131(9), 1063-1070 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  17. Lee, J. S., Dodds, J., and Santamarina, J. C. (2006). 'Behavior of rigid-soft particle mixtures.' J. Materials in civil Eng., ASCE, 19(2), 179-184
  18. Santamarina, J. C., Klein, K. A., and Fam, M. A. (2001). Soils and Waves - Particulate Materials Behavior, Characterization and Process Monitoring. John Wiley and Sons. New York
  19. Saxena, S. K., Reddy, K. R., and Avramidis, A. S. (1988). 'Static behavior of artificially cemented sand.' Indian Geotechnical J., 18(2), 111-141
  20. Sawangsuriya, A., Biringen, E., Fratta, D., Bosscher, P. J., and Edil, T. B. (2006). 'Demensionless limits for the collection and interpretation of wave propagation data in soils.' ASCE Geotechnical Special Publication (GSP) No. 149: Site and Geomaterial Characterization, 160-166
  21. Tweedie, J. J., Humphrey, D. N., and Sandford, T. C. (1998). 'Tire shreds as lightweight retaining wall backfill: active conditions.' J. Geotech. Geoenviron. Eng., 124(11), 1061-1070 https://doi.org/10.1061/(ASCE)1090-0241(1998)124:11(1061)
  22. Viggiani, G. and Atkinson, J. H. (1995). 'Interpretation of bender element tests.' Geotechnique, 45(1), 149-154 https://doi.org/10.1680/geot.1995.45.1.149
  23. Yun, T. S. and Santamarina, J. C. (2005). 'Decementation, softening, and collapse: changes in small-strain shear stiffness in koloading.' J. Geotech. Geoenviron. Eng., 131(9), 350-358 https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350)
  24. Zornberg, J. G., Cabral, A., and Viratjandr, C. (2004). 'Behaviour of Tire Shred-Soil Mixtures.' Can. Geotech. J., 41(2), 227-241 https://doi.org/10.1139/t03-086