Effect of Reboxetine Pretreatment on the Forced Swimming Test-induced Gene Expression Profile in the Rat Lateral Septum

  • Moon, Bo-Hyun (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Kang, Seung-Woo (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Kim, Hyun-Ju (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Shin, Seung-Keon (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Choi, Sang-Hyun (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Lee, Min-Soo (Department of Psychiatry and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine) ;
  • Kim, Myeung-Kon (Department of Biochemistry and Molecular Biology, Korea University College of Medicine) ;
  • Shin, Kyung-Ho (Department of Pharmacology and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine)
  • Published : 2008.03.31


The forced swim test (FST) is the most widely used model for assessing potential antidepressant activity. Although it has been shown that lateral septum is involved with the FST-related behavior, it is not clear whether antidepressant treatments could alter the FST-induced gene expression profile in the lateral septum. In the present study, the gene expression profiles in response to FST and reboxetine pretreatment were observed in the lateral septum of rats. Reboxetine is known as a most selective serotonin norepinephrine reuptake inhibitor. In addition, we compared the changes in gene expression profile between reboxetine response and nonresponse groups, which were determined by counting FST-related behavior. After FST, lateral septum from controls and reboxetine pretreated group were dissected and gene expression profiles were assessed using an Affymetrix microarray system containing 15,923 genes. Various genes with different functions were changed in reboxetine response group compared with reboxetine nonresponse group, In particular, pleiotrophin, orexin receptor 2, serotonin 2A receptor, neuropeptide Y5 receptor and thyroid hormone receptor $\beta$ were decreased in reboxetine response group, but Lim motif-containing protein kinase 1 (Limk1) and histone deacetylase 1 (HDAC1) were increased. Although further studies are required for direct roles of these genes in reboxetine response, the microarray may provide tools to find out potential target genes and signaling pathways in antidepressant response.


  1. Wong, M. L. & Licinio, J. Research and treatment approaches to depression. Nat Rev Neurosci 2:343-351 (2001) https://doi.org/10.1038/35072566
  2. Porsolt, R. D., Anton, G., Blavet, N. & Jalfre, M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379-391 (1978) https://doi.org/10.1016/0014-2999(78)90118-8
  3. Lucki, I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 8:523-532 (1997) https://doi.org/10.1097/00008877-199711000-00010
  4. Borsini, F. & Meli, A. Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94:147-160 (1988)
  5. Detke, M. J., Rickels, M. & Lucki, I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66-72 (1995) https://doi.org/10.1007/BF02245592
  6. Sheehan, T. P., Chambers, R. A. & Russell, D. S. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res Brain Res Rev 46:71-117 (2004) https://doi.org/10.1016/j.brainresrev.2004.04.009
  7. Bali, B., Erdelyi, F., Szabo, G. & Kovacs, K. J. Visualization of stress-responsive inhibitory circuits in the GAD65-eGFP transgenic mice. Neurosci Lett 380:60-65 (2005) https://doi.org/10.1016/j.neulet.2005.01.014
  8. Melia, K. R., Ryabinin, A. E., Schroeder, R., Bloom, F. E. & Wilson, M. C. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J Neurosci 14:5929-5938 (1994) https://doi.org/10.1523/JNEUROSCI.14-10-05929.1994
  9. Ons, S., Marti, O. & Armario, A. Stress-induced activation of the immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is restricted to telencephalic areas in the rat brain: relationship to c-fos mRNA. J Neurochem 89:1111-1118 (2004) https://doi.org/10.1111/j.1471-4159.2004.02396.x
  10. Trneckova, L., Rotllant, D., Klenerova, V., Hynie, S. & Armario, A. Dynamics of immediate early gene and neuropeptide gene response to prolonged immobilization stress: evidence against a critical role of the termination of exposure to the stressor. J Neurochem 100:905-914 (2007) https://doi.org/10.1111/j.1471-4159.2006.04278.x
  11. Duncan, G. E., Johnson, K. B. & Breese, G. R. Topographic patterns of brain activity in response to swim stress: assessment by 2-deoxyglucose uptake and expression of Fos-like immunoreactivity. J Neurosci 13:3932-3943 (1993) https://doi.org/10.1523/JNEUROSCI.13-09-03932.1993
  12. Muigg, P. et al. Altered brain activation pattern associated with drug-induced attenuation of enhanced depression-like behavior in rats bred for high anxiety. Biol Psychiatry 61:782-796 (2007) https://doi.org/10.1016/j.biopsych.2006.08.035
  13. Stemmelin, J., Lukovic, L., Salome, N. & Griebel, G. Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30:35-42 (2005) https://doi.org/10.1038/sj.npp.1300562
  14. Hajos, M., Fleishaker, J. C., Filipiak-Reisner, J. K., Brown, M. T. & Wong, E. H. The selective norepinephrine reuptake inhibitor antidepressant reboxetine: pharmacological and clinical profile. CNS Drug Rev 10:23-44 (2004) https://doi.org/10.1111/j.1527-3458.2004.tb00002.x
  15. Willner, P., Muscat, R. & Papp, M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525-534 (1992) https://doi.org/10.1016/S0149-7634(05)80194-0
  16. Cryan, J. F., Markou, A. & Lucki, I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23:238-245 (2002) https://doi.org/10.1016/S0165-6147(02)02017-5
  17. Connor, T. J., Kelliher, P., Harkin, A., Kelly, J. P. & Leonard, B. E. Reboxetine attenuates forced swim test-induced behavioural and neurochemical alterations in the rat. Eur J Pharmacol 379:125-133 (1999) https://doi.org/10.1016/S0014-2999(99)00492-6
  18. Harkin, A. et al. Activity and onset of action of reboxetine and effect of combination with sertraline in an animal model of depression. Eur J Pharmacol 364:123-132 (1999) https://doi.org/10.1016/S0014-2999(98)00838-3
  19. Wong, E. H. et al. Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor. Biol Psychiatry 47:818-829 (2000) https://doi.org/10.1016/S0006-3223(99)00291-7
  20. Cryan, J. F., Page, M. E. & Lucki, I. Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol 436:197-205 (2002) https://doi.org/10.1016/S0014-2999(01)01628-4
  21. Kinnunen, A. et al. N-syndecan and HB-GAM (heparin-binding growth-associated molecule) associate with early axonal tracts in the rat brain. Eur J Neurosci 10:635-648 (1998)
  22. Hida, H. et al. Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 17:2127-2134 (2003) https://doi.org/10.1046/j.1460-9568.2003.02661.x
  23. Jung, C. G. et al. Pleiotrophin mRNA is highly expressed in neural stem (progenitor) cells of mouse ventral mesencephalon and the product promotes production of dopaminergic neurons from embryonic stem cell-derived nestin-positive cells. FASEB J 18:1237-1239 (2004) https://doi.org/10.1096/fj.03-0927fje
  24. Ezquerra, L. et al. Pleiotrophin is a major regulator of the catecholamine biosynthesis pathway in mouse aorta. Biochem Biophys Res Commun 323:512-517 (2004) https://doi.org/10.1016/j.bbrc.2004.08.121
  25. Tsao, P. & von Zastrow, M. Downregulation of G protein-coupled receptors. Curr Opin Neurobiol 10:365-369 (2000) https://doi.org/10.1016/S0959-4388(00)00096-9
  26. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365-376 (1999) https://doi.org/10.1016/S0092-8674(00)81965-0
  27. Terao, A., Apte-Deshpande, A., Morairty, S., Freund, Y. R. & Kilduff, T. S. Age-related decline in hypocretin (orexin) receptor 2 messenger RNA levels in the mouse brain. Neurosci Lett 332:190-194 (2002) https://doi.org/10.1016/S0304-3940(02)00953-9
  28. Sunter, D. et al. Orexins: effects on behavior and localisation of orexin receptor 2 messenger ribonucleic acid in the rat brainstem. Brain Res 907:27-34 (2001) https://doi.org/10.1016/S0006-8993(01)02344-7
  29. Blanco, M. et al. Cellular localization of orexin receptors in human adrenal gland, adrenocortical adenomas and pheochromocytomas. Regul Pept 104:161-165 (2002) https://doi.org/10.1016/S0167-0115(01)00359-7
  30. Walling, S. G., Nutt, D. J., Lalies, M. D. & Harley, C. W. Orexin-A infusion in the locus ceruleus triggers norepinephrine (NE) release and NE-induced longterm potentiation in the dentate gyrus. J Neurosci 24:7421-7426 (2004) https://doi.org/10.1523/JNEUROSCI.1587-04.2004
  31. Todd, K. G., McManus, D. J. & Baker, G. B. Chronic administration of the antidepressants phenelzine, desipramine, clomipramine, or maprotiline decreases binding to 5-hydroxytryptamine2A receptors without affecting benzodiazepine binding sites in rat brain. Cell Mol Neurobiol 15:361-370 (1995) https://doi.org/10.1007/BF02089946
  32. Wohlpart, K. L. & Molinoff, P. B. Regulation of levels of 5-HT2A receptor mRNA. Ann N Y Acad Sci 861:128-135 (1998) https://doi.org/10.1111/j.1749-6632.1998.tb10183.x
  33. Hopwood, S. E. & Stamford, J. A. Noradrenergic modulation of serotonin release in rat dorsal and median raphe nuclei via alpha (1) and alpha (2A) adrenoceptors. Neuropharmacology 41:433-442 (2001) https://doi.org/10.1016/S0028-3908(01)00087-9
  34. Patel, J. G., Bartoszyk, G. D., Edwards, E. & Ashby, C. R., Jr. The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test. Synapse 52:73-75 (2004) https://doi.org/10.1002/syn.10308
  35. Sibille, E. et al. Antisense inhibition of 5-hydroxytryptamine2a receptor induces an antidepressant-like effect in mice. Mol Pharmacol 52:1056-1063 (1997) https://doi.org/10.1124/mol.52.6.1056
  36. Beck, B., Richy, S., Dimitrov, T. & Stricker-Krongrad, A. Opposite regulation of hypothalamic orexin and neuropeptide Y receptors and peptide expressions in obese Zucker rats. Biochem Biophys Res Commun 286:518-523 (2001) https://doi.org/10.1006/bbrc.2001.5420
  37. Widdowson, P. S. & Halaris, A. E. Chronic desipramine treatment reduces regional neuropeptide Y binding to Y2-type receptors in rat brain. Brain Res 539:196-202 (1991) https://doi.org/10.1016/0006-8993(91)91621-7
  38. Goyal, S. N., Kokare, D. M., Chopde, C. T. & Subhedar, N. K. Alpha-melanocyte stimulating hormone antagonizes antidepressant-like effect of neuropeptide Y in Porsolt's test in rats. Pharmacol Biochem Behav 85:369-377 (2006) https://doi.org/10.1016/j.pbb.2006.09.004
  39. Redrobe, J. P., Dumont, Y., Fournier, A. & Quirion, R. The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology 26:615-624 (2002) https://doi.org/10.1016/S0893-133X(01)00403-1
  40. Banki, C. M., Bissette, G., Arato, M. & Nemeroff, C. B. Elevation of immunoreactive CSF TRH in depressed patients. Am J Psychiatry 145:1526-1531 (1988) https://doi.org/10.1176/ajp.145.12.1526
  41. Kirkegaard, C., Faber, J., Hummer, L. & Rogowski, P. Increased levels of TRH in cerebrospinal fluid from patients with endogenous depression. Psychoneuroendocrinology 4:227-235 (1979) https://doi.org/10.1016/0306-4530(79)90006-4
  42. Joffe, R. T. & Marriott, M. Thyroid hormone levels and recurrence of major depression. Am J Psychiatry 157:1689-1691 (2000) https://doi.org/10.1176/appi.ajp.157.10.1689
  43. Bauer, M., Hellweg, R., Graf, K. J. & Baumgartner, A. Treatment of refractory depression with high-dose thyroxine. Neuropsychopharmacology 18:444-455 (1998) https://doi.org/10.1016/S0893-133X(97)00181-4
  44. Rudas, S., Schmitz, M., Pichler, P. & Baumgartner, A. Treatment of refractory chronic depression and dysthymia with high-dose thyroxine. Biol Psychiatry 45:229-233 (1999) https://doi.org/10.1016/S0006-3223(98)00033-X
  45. Lifschytz, T., Shalom, G., Lerer, B. & Newman, M. E. Sex-dependent effects of fluoxetine and triiodothyronine in the forced swim test in rats. Eur Neuropsychopharmacol 16:115-121 (2006) https://doi.org/10.1016/j.euroneuro.2005.07.003
  46. Racz, B. & Weinberg, R. J. Spatial organization of cofilin in dendritic spines. Neuroscience 138:447-456 (2006) https://doi.org/10.1016/j.neuroscience.2005.11.025
  47. Arber, S. et al. Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805-809 (1998) https://doi.org/10.1038/31729
  48. Yang, N. et al. Cofilin phosphorylation by LIMkinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809-812 (1998) https://doi.org/10.1038/31735
  49. Yoshikawa, T. Approach to depressogenic genes from genetic analyses of animal models. Seishin Shinkeigaku Zasshi 106:1037-1044 (2004)
  50. McClung, C. A. & Nestler, E. J. Neuroplasticity mediated by altered gene expression. Neuropsychopharmacology 33:3-17 (2008) https://doi.org/10.1038/sj.npp.1301544
  51. Cassel, S. et al. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol Pharmacol 70:487-492 (2006) https://doi.org/10.1124/mol.106.022301
  52. Tsankova, N. M. et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519-525 (2006) https://doi.org/10.1038/nn1659