Development of Bioartificial Skin for Skin Regeneration

손상된 피부 재건을 위한 바이오인공피부의 개발 동향

  • Seo, Young-Kwon (Dongguk University Research Institute of Biotechnology, Dongguk University) ;
  • Song, Kye-Yong (Department of Pathology, Chung-Ang University) ;
  • Park, Jung-Keug (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 서영권 (동국대학교 생명과학연구원) ;
  • 송계용 (중앙대학교 의과대학 병리학교실) ;
  • 박정극 (동국대학교 생명화학공학과)
  • Published : 2008.02.29

Abstract

There are many different approaches to healing of acute and chronic ulcer and large skin defect, such as burn. Currently available wound covers fall into two categories. Permanent covering, such as autografts, and temporary ones, such as allograft including de-epidermized cadaver skin, bioartificial skin, xenografts, and synthetic dressings. Autologous skin grafting in the form of split- or full-thickness skin is still the good standard. Following on from developments in the 1980s involving the use of cultured keratinocyte grafts in wound healing, the last decade has been great progress in the fabrication of composite bioartificial skin grafts. However, two bottleneck on producing cultured bioartificial skin, whether of the simple epithelial cell sheet type, or the more complex composite type, continue to be the generation of sufficient keratinocytes cheaply and quickly and develop biocompatible dermal scaffolds. This article covers the development, clinical application, and current research directions associated with bioartificial skin.

Keywords

References

  1. Hansbrough, J. F., and E. S. Franco (1998), Skin replacements, Clin. Plast. Surg. 25, 407-423
  2. Ruszczak, Z., and R. A. Schwartz (2000) , Modem aspects of wound healing, Dermatol. Surg. 26, 219-229 https://doi.org/10.1046/j.1524-4725.2000.09215.x
  3. Horch, R. E., J. Kopp, J. Beier, and A. D. Bach (2005), Tissue engineering of cultured skin substitutes, J. Cell. Mol. 9, 592-608 https://doi.org/10.1111/j.1582-4934.2005.tb00491.x
  4. Cuono, C., R. Langdon, and J. McGuire (1986), Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury, Lancet 17,1123-1124
  5. Abbott, W. M., and J. S. Hembree (1970), Absence of antigenicity in freeze-dried skin allografts, Cryobiology 6, 416-418 https://doi.org/10.1016/S0011-2240(70)80099-2
  6. Hussmann, J., R. C. Russell, J. O. Kucan, D. Hebebrand, T. Bradley, and H. U. Steinau (1994), Use of glycerolized human allog rafts as temporary and permanent cover in adult s and children, Burns 20, S61-65 https://doi.org/10.1016/0305-4179(94)90109-0
  7. Kuroyanagi, Y. N., Yamada, R. Yamashita, and E. Uchinurna (2001),Tissue-engineered product: allogenic cultured dermal substitute composed of spongy collagen with fibroblast. Artif. Organs 25, 180-186 https://doi.org/10.1046/j.1525-1594.2001.025003180.x
  8. Wainwright, D. J. (1995), Use of acellular allograft dermal matrix (AlIoDarm) in the management of full-thickness burns, Burns 21, 243-248 https://doi.org/10.1016/0305-4179(95)93866-I
  9. Callcut, R. A., M. J. Schurr, M. Sloan, and L. D. Faucher (2006), Clinical experience with Alloderm : a one -staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts, Burns 32, 583-588 https://doi.org/10.1016/j.burns.2005.12.002
  10. Rennekampff, H. O ., V. Kiessig, S. Griffey, G. Greenleaf, and J. F. Hansbrough (1997), Acellular human dermis promotes cultured keratinocyte engraftment, J. Burn Care Rehabil. 18, 535-544 https://doi.org/10.1097/00004630-199711000-00012
  11. Jasinkowski , N. L., and J. L. Cullum (1984), Human amniotic membrane as a wound dressing, AORN J. 39, 894-895 https://doi.org/10.1016/S0001-2092(07)64029-0
  12. Tyszkiewicz, J. T., I. A. Uhrynowska-Tyszkiewicz, A. Kaminski and A. Dziedzic-Goclawska (1999), Amnion allografts prepared in the central tissue bank in warsaw, Ann. Transplant. 4, 85-90
  13. Quinby W. C., H. C. Hoover, M. Scheflan, P. T. Walters, S. A. Slavin, and C. C. Bondoc (1982), Clinical trials of amniotic membranes in burn wound care, Plast. Reconstr. Surg. 70, 711-717 https://doi.org/10.1097/00006534-198212000-00009
  14. Subrahmanyam , M. (1995), Amniotic membrane as a cover for microskin grafts, Br. J. Plast. Surg. 48, 477-478 https://doi.org/10.1016/0007-1226(95)90123-X
  15. Honavar, S. G., S. K. Bansal, V. S. Sangwan, and G. N. Rao (2000), Amniotic membrane transplantation for ocular surface reconstruction in Stevens-Johnson Syndrome, Ophthalmology 107, 975-979 https://doi.org/10.1016/S0161-6420(00)00026-9
  16. Kim, J. S., J. C. Kim, B. K. Na, J. M. Jeong, and C. Y. Song (2000), Amniot ic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkari burn, Exp. Eye Res. 70, 329-337 https://doi.org/10.1006/exer.1999.0794
  17. Ward, D. J., J. P. Bennett, H. Burgos, and J. Fabre (1989), The heal ing of chronic venous leg ulcers with prepared human amnion, Br. J. Plast. Surg. 42, 463-467 https://doi.org/10.1016/0007-1226(89)90015-5
  18. Ahn, J. I., I. K. Jang, D. H. Lee, Y. K. Seo, H. H. Yoon, Y. H. Shin, C. H. Kim, K. Y. Song, H. G. Lee, E. K. Yang, K. H. Kim, and J. K. Park (2005), A comparison of lyophilized amniotic membrane with cryopreserved amniotic membrane for the reconstruction of rabbit corneal epithelium. Biotech and Biopro. Eng. 10, 262-269 https://doi.org/10.1007/BF02932023
  19. Badylak, S. F. (2007), The extracelular matrix as a biologic scaffold material, Biomaterials 28, 3587-3593 https://doi.org/10.1016/j.biomaterials.2007.04.043
  20. Hodde, J. (2002), Natually occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 8, 295-308 https://doi.org/10.1089/107632702753725058
  21. Kawai, K, S. Suzuki, Y. Tabata, Y. Ikada, and Y. Nishimura (2000), Accelerated tissue regeneration through incorporation of basic fibroblast growth factor -impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489-499 https://doi.org/10.1016/S0142-9612(99)00207-0
  22. Lin, S. D., C. S. Lai, C. K. Chou, C. W. Tsai, K. F. Wu, and C. W. Chang (1992), Microskin autograft with pigskin xenograft overlay; a preliminary report of studies on patien ts, Burn 18, 321-325 https://doi.org/10.1016/0305-4179(92)90155-N
  23. Basile, A. R. (1982), A comparative study of glycerinized and lyophilized porcine skin in dressings for third-degree burns, Plast. Reconstruct Surg. 69, 969-974 https://doi.org/10.1097/00006534-198206000-00010
  24. Madden, M. R., J. L. Finkelstein, L. Staiano-Coico, C. W. Goodwin, G. T. Shires, E. E. Nolan, and J. M. Hefton (1986), Grafting of cultured allogeneic epidermis on second- and third- degree burn wounds on 26 patients, J. Trauma. 26, 955-962 https://doi.org/10.1097/00005373-198611000-00001
  25. Phillips, T. J., J. Bhawon, I. M. Leigh, H. J. Baum, and B. A. Gilchrest (1990), Cultured epidermal autografts and allografts: a study of diffe rentiation and allograft survival, J. AM. Acad. Dermatol. 23, 189-198 https://doi.org/10.1016/0190-9622(90)70197-P
  26. Burt, A. M., C. D. Pallett, J. P. Sloane, M. J. O' Hare, K. F. Schafler, P. Yardeni, A. Eldad, J. A. Clarke, and B. A. gusterson (1989), Survival of cultured allografts in patients with bums assessed with probe specific for Y chromosome, BMJ. 298, 915-917 https://doi.org/10.1136/bmj.298.6678.915
  27. Aubock, J., E. Irschick E, N. Romani, P. Kompatscher, R. Hopfl, M. Herold, G. Schuler, M. Bauer, C. Huber, and P. Fritsch (1988), Transplantation 45, 730-737 https://doi.org/10.1097/00007890-198804000-00013
  28. Horch, R. E., M. Debus, G. Wagner, and G. B. Stark (2006), Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis, Tissue Eng. 6, 53-67
  29. Seo, Y. K., J. I. Ahn, D. H. Lee, S. Y. Kwon, D. H. Jung, Y. S. Park, K. Y. Song, E. K. Yang, Y. J. Kim, and J. K. Park (2004), The wound healing effects of human deepithelialized amniotic membrane with skin keratinocyte. Tissue Eng. Regen: Med 1, 178-183
  30. Kearney, J. N. (2001), Clinical evaluation of skin substitutes, Burns 27, 545-551 https://doi.org/10.1016/S0305-4179(01)00020-1
  31. Burke, J. F., I. V. Yannas, W. C. Quinby, C. C. Bondoc, and W. K. Jung (1981), Successful use of a physiologically acceptable artifical skin in the treatment of extensive burn injury, Ann. Surg. 194, 413-428 https://doi.org/10.1097/00000658-198110000-00005
  32. Matsui, R., N. Okura, K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Histological evaluation of skin reconstruction using artificial dermis, Biomaterials 17, 995-1000 https://doi.org/10.1016/0142-9612(96)84674-6
  33. Kremer, M., E. Lang , and A. C. Berger (2000 ), Evaluation of dermal-epidermal skin equivalents ('composite-skin') of huma n keratinocytes in a collagen-glycosaminoglycan matrix ($Integra^{TM}$ Artificial Skin), Br. J. Plast. Surg. 53, 459-465 https://doi.org/10.1054/bjps.2000.3368
  34. Matsui, R., K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Evaluation of an artificial dermis full -thickness skin defect model in the rat, Biomaterials 17, 989-994 https://doi.org/10.1016/0142-9612(96)84673-4
  35. Suzuki , S., K. Kawai, F. Ashoori , N. Morimoto, Y. Nishimura, and Y. Ikada (2000), Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge, Br. J. Plast. Surg. 53, 659-666 https://doi.org/10.1054/bjps.2000.3426
  36. Guerret, S., E. Govignon, D. J. Hartmann, and V. Ronfard (2003) Long-term remodeling of a bilayered living human skin equivalent(Apligra$circledR$) grafted onto the nude mice : immunolocalization of human cells and characterization of extracellular matrix, Wound Rep. Reg. 11, 35-45 https://doi.org/10.1046/j.1524-475X.2003.11107.x
  37. Naughton, G., J Mansbridge, and G. Gentzkow (1997), A metabolically active human dermal replacement for the treatment of diabetic foot ulcers, Artif. Organs 21, 1203-1210 https://doi.org/10.1111/j.1525-1594.1997.tb00476.x
  38. Hanbrough, J. F., D. W. Mozingo, P. Kealey, M. Davis, A. Gidner, and G. D. Gentzkow (1997), Clinical trials of a biosynthetic temporary skin replacement, Dennagraft-transitional covering, compared with cryopreserved human cadaver skin for temporarycoverage of excised bum wounds, J. Burn Care Rehabil. 18, 43-51 https://doi.org/10.1097/00004630-199701000-00008
  39. Hanbrough, J. F., M. L. Cooper, R. Cohen, R. Spielvogel, G. Greenleaf, R. L. Bartel, and G. Naughton (1992), Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery 111, 438-446
  40. Sabolinski M. L., O. Alvarez , M. Auletta, G. Mulder , and N. L. Parenteau (1996), Cultured skin as a smart material for healing wounds.experience in venous ulcers, Biomaterials 17, 311-320 https://doi.org/10.1016/0142-9612(96)85569-4
  41. Eaglstein , W. H., M. Iriondo, and K. Laszlo (1995), A composite skin substitute (Graftskin) for surgical wounds, Dermatol. Surg. 21, 839-843 https://doi.org/10.1016/1076-0512(94)00290-8
  42. Cooper, M. L., and J. F. Hansbrough (1991), Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice, Surgery 109, 198-207
  43. Yannas, I. V., and J. F. Burke (1980), Design of an artificial skin I . Basic design principles, J. Biomed. Mater. Res. 14, 65-81 https://doi.org/10.1002/jbm.820140108
  44. Dagalakis, N., J. Flink, P. Stas ikelis, J. F. Burke, and I. V. Yannas (1980), Design of an artificial skin III . Control of pore structure , J. Biomed. Mater. Res. 14, 511-528 https://doi.org/10.1002/jbm.820140417
  45. Yannas, I. V., J. F. Burke, P. L. Gordon , C. Huang, and R. H. Rubenstein (1980), Design of an artificial skin III . Control of chemical composition, J. Biomed. Mater. Res. 14, 107-132 https://doi.org/10.1002/jbm.820140203
  46. Nehrer, S., H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louse, C. B. Sledge, I. V. Ya nnas, and M. Spector (1997), Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes, Biomaterials 18, 769-776 https://doi.org/10.1016/S0142-9612(97)00001-X
  47. Orgill, D. P., and I. V. Yannas (1998), Design of an artificial skin N. Ues of island graft to isolate organ regeneration from scar synthesis and other processes leading to skin wound closure , J. Biomed. Mater. Res. 39, 531-535 https://doi.org/10.1002/(SICI)1097-4636(19980315)39:4<531::AID-JBM4>3.0.CO;2-K
  48. Doillon, C. J., C. F. Whyne, S. Brandwein, and F. H. Silver (1986), Collagen-based wound dressing : Control of the pore structure and morphology . J. Biomed. Mater. Res. 20, 1219-1228 https://doi.org/10.1002/jbm.820200811
  49. Boyce, S. T , D. J. Christianson, and J. F. Hansbro ugh (1988), Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal kerationcytes, J. Biomed. Mater. Res. 22, 939-957 https://doi.org/10.1002/jbm.820221008
  50. Pieper, J. S., A. Oosterhof, P. J. Dijkstra, J. H. Veerkamp, and T. H. Van Kuppevelt (1996), Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate , Biomaterials 20, 847-858 https://doi.org/10.1016/S0142-9612(98)00240-3
  51. Berthod, F., F. Sahuc, D. Hayek, O. Damour, and C. Collombel (1996), Deposition of collagen fibriles bundles by long -term culture of fibroblast in a collagen sponge, J. Biomed. Mater. Res. 32, 87-93 https://doi.org/10.1002/(SICI)1097-4636(199609)32:1<87::AID-JBM10>3.0.CO;2-F
  52. Lamme E. N., R. T. van Leeuwen, J. R. Mekker, E. Middelkoop (2002), Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formaion, Wound Repair Regen . 10, 152-160 https://doi.org/10.1046/j.1524-475X.2002.10901.x
  53. Morimoto, N., Y. Saso, K. Tomihata, T Taira, Y. Takahashi, M. Ohta, and S. Suzuki (2005), Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation, J. Surg. Res. 125, 56-67 https://doi.org/10.1016/j.jss.2004.11.012
  54. Seo Y. K., K. Y. Song, Y. J. Kim, and J. K. Park (2007), Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblast , Artif Organs 31, 509-520 https://doi.org/10.1111/j.1525-1594.2007.00417.x
  55. Alexander, S. A., and R. B. Donoff (1980), The glycosaminoglycans of open wound, J. Surg. Res. 29, 422-429 https://doi.org/10.1016/0022-4804(80)90055-4
  56. Hu, M., E. E. Sabelman, Y. Gao, J. Chang , and V. R. Hentz (2003), Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds, J. Biomed. Mater. Res. B Appl. Biomater. 67, 586-592
  57. Murashita , T., Y. Nakayama , T. Hirano , and S. Ohashi (1997), Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin, Br. J. Plast. Surg. 49, 58-63
  58. Greco, R. M., J. A. Iocono, and H. P. Ehrich (1998), Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix , J. Cell. Physiol. 177, 465-473 https://doi.org/10.1002/(SICI)1097-4652(199812)177:3<465::AID-JCP9>3.0.CO;2-5
  59. Boralidi, F., M. A. Croce, D. Quaglino, R. Sammarco, E. Camevali, R. Tiozzo, and I. Pasquali-Ronchetti (2003), Cell-matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan , Tissue Cell 35, 37-45 https://doi.org/10.1016/S0040-8166(02)00101-5
  60. Caplan, A. I. (2000), Tissue engineering designs for the future: New logics, old molecules , Tissue Eng. 6, 1-8 https://doi.org/10.1089/107632700320838
  61. Galassi, G., P. Brun, G. Abatangelo, M. Radice, R. Cortivo, G. F. Zanon, P. Genovese , and G. Abatangelo (2000), In vitro reconstructed dermis implanted in human Wounds: degradation studies of the HA-based Supporting scaffold , Biomaterials 21, 2183-2191 https://doi.org/10.1016/S0142-9612(00)00147-2
  62. Doillon , C. J., F. H. Silver, and R. A. Berg (1987), Fibroblasts growth on a porous collagen sponge containing hyaluronic acid and fibronectin, Biomaterials 8, 195-200 https://doi.org/10.1016/0142-9612(87)90063-9
  63. Doillon , C. J., and F. H. Silver (1986), Collagen-based wound dressing : Effect of hyaluronic acid and fibronectin on wound healing, Biomaterials 7, 3-8 https://doi.org/10.1016/0142-9612(86)90080-3
  64. Kubo, K., and Y. Kuroyanagi (2003), Characterization of a cultured dermal Substitute composed of a spongy matrix of hyaluronic acid and collagen comb ined with fibroblasts, J. Artif. Organs 6, 138-144
  65. Kuroyanagi , Y., K. Kubo, S. Kagawa, H. Matsui, H. J. Kim, S. Numari , and Y. Mabuchi (2004), Establishment of banking system for allogeneic cultured dermal substitute, J. Artif. Organs 1, 13-21
  66. Kashiwa , N., O. Ito, T. Ueda, K. Kubo, H. Matsui, and Y. Kuroyanagi (2004), Treatment of full-thickness skin defect with concomitant grafting of 6-fold extended mesh auto-skin and allogeneic cultured dermal substitute, Artif. Organs 5, 444-450
  67. Kubo, K., and Y. Kuroyanagi (2004), Development of a cultured dermal substitute composed of a spongy matrix of hyaluronic acid and atelo-collagen combined with fibrob lasts : cryopreservation, Artif. Organs 2, 182-188
  68. Kubo, K., and Y. Kuroyanagi (2003), Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute: evaluation in an animal test, Artif. Organs 6, 64-70 https://doi.org/10.1007/s100470300010
  69. Caravaggi, C., R. De Giglio, C. Pritelli, M. Sornmaria, S. Dalla Noce, E. Faglia, M. Mantero, G. Clerici, P. Fratino, L. Dalla Paola, G. Mariani, R. Mingardi, and A. Morabito (2003), HYAFF 11 -based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial, Diabetes Care 26, 2853-2859 https://doi.org/10.2337/diacare.26.10.2853
  70. Navsaria, H. A., S. R. Myers, I. M. Leigh, and I. A. McKay (1995), Culturing skin in vitro for wound therapy, TIBIOTECH. 13, 91-100 https://doi.org/10.1016/S0167-7799(00)88913-1
  71. Lee, J. H., Y. S. Cho, H. H. Kim and J. S. Lee (1998), Wound dressing, Biomaterials Res. 2, 180-191