Streptococcus faecalis var. liquefaciens 전세포 고정화법을 이용한 Casein Phosphopeptides 생산

Production of casein phosphopeptides using Streptococcus faecalis var. liquefaciens cell immobilization

  • 이기성 (성균관대학교 생명공학부) ;
  • 신재윤 (성균관대학교 생명공학부) ;
  • 장이현 (성균관대학교 생명공학부) ;
  • 권대혁 (성균관대학교 생명공학부) ;
  • 박기문 (성균관대학교 생명공학부) ;
  • 진용수 (성균관대학교 생명공학부)
  • Lee, Ki-Sung (School of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Shin, Jae-Yoon (School of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jang, Yi-Hyun (School of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kweon, Dae-Hyuk (School of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Park, Ki-Moon (School of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jin, Yong-Su (School of Biotechnology and Bioengineering, Sungkyunkwan University)
  • 발행 : 2008.02.29

초록

Streptococcus faecalis var. liquefaciens를 calcium alginate gel에 고정화 후 CPP생산 가능성을 실험하였다. 균체를 회수하여 담체에 고정화하는 방법보다는 배양액 전체를 고정화하는 방법이 보다 높은 생산성으로 CPP를 생산하였다. Streptococcus faecalis var. liquefaciens 전세포 고정화 방법에 의한 sodium casenate로부터의 CPP 생산의 최적조건은 bioreactor부피대비 bead사용량이 30%, 반응온도는 $50^{\circ}C$, 반응 pH는 7.0, 기질의 농도는 10% 이었다. 또한, 고정화 균체를 이용한 연속적인 생산은 회분식 반응에서 설정된 최적 조건하에서 20% 수준의 CPP를 최소한 1개월 이상 연속적으로 생산할 수 있었다.

Optimum conditions for production of casein phosphopeptides (CPP) from sodium casenate by immobilized cell culture of Streptococcus faecalis var. liquefaciens were investigated. Immobilized cells were made by mixing 60% sodium alginate solution with an equal volume of culture broth at the end of exponential phase and subsequently dropping the mixture into $CaCl_{2}$ solution. Optimum conditions for CPP production by the immobilized cells were the same as those ($50^{\circ}C$, pH 7.0, and 10% substrate concentration) by the crude enzyme solution from the supernatant of culture broth. Optimum loading volume of the immobilized cells into a batch reactor was 30% (w/v). Using a continuous reactor loaded by the immobilized cells under the identified optimal conditions, we were able to produce CPP continuously up to 30 days with a maximum CPP conversion efficiency of 20%.

키워드

참고문헌

  1. Armand, C. R. and H. M. Linkswiler (1974), Effect of protein intake on calcium balance of young man givin 500 mg calcium dairy, J. Nutrition. 104, 695-699 https://doi.org/10.1093/jn/104.6.695
  2. Bickerstaff G. F. (1997), Immobilization of Enzymes and Cells, Human Press., New Jersey
  3. Clegg, K. M., G. Smith and A. L. Walker (1974), Production of an enzymatic hydrolysate of casein on a kilogram scale, J. Food Tech. 9, 425-431 https://doi.org/10.1111/j.1365-2621.1974.tb01791.x
  4. Dem (1981), Protein hydrolysate, UK Patent 1, 595, 499
  5. Im, G. H., B. W. Lee, G. M. Park, S. H. Son, and J. H. Yu (1993), Production of Casein Phosphopeptides by Streptococcus sp, Kor. J. Appl. Microbiol, Biotechnol. 21(5), 468-472
  6. Kierstan, M. and C. Bucke (1997), Biotech. Bioeng, 19, 387-397
  7. Kitts, D. D. and Y. V. Yua, Caseinphosphopeptides and calcium bioavailability (1992), Food Sci. Technol, 3, 31-35 https://doi.org/10.1016/0924-2244(92)90113-B
  8. Krish J. and B, Szajani (1996), Biotechnol. Lett, 18, 393-402 https://doi.org/10.1007/BF00143458
  9. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall (1951), Protein measurement with the Folin phenol reagent, J. BioI. Chem, 193, 265-275
  10. Mannheim, A. and M. Cheryan (1990), Continuos hydrolysis of milk protein in a membrane reactor, J. Food Sci, 55(2), 381-385 https://doi.org/10.1111/j.1365-2621.1990.tb06769.x
  11. Manohar S. and T. B. Karegoudar (1998), Appl. Microbiol. Biotechnol, 49, 785-792 https://doi.org/10.1007/s002530051247
  12. Naito , H., A. Kawakami and T. Imamuta (1972) , In vivo formation of phosphopeptide with Ca-binding property in the small intestinal tract of the rat fed on casein, Agricultural and Biological Chem, 36, 409-415 https://doi.org/10.1271/bbb1961.36.409
  13. Nilsson K. (1987), Trends Biotechnol, 5, 73-78 https://doi.org/10.1016/S0167-7799(87)80015-X
  14. Scopes, R. (1982), Protein purification, Spinger-Verlag, New York, 261-266
  15. Swausgood, H. E. (1985), Characteristics of fluids of animal origin: milk. In: Food chemistry. Fennema, O. R. (ed.), Marcel Dekker, Inc, New York, 791-828
  16. Swank R. W. and K. D. Munkres (1971) , Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate, Anal. Biochem, 39, 462-477 https://doi.org/10.1016/0003-2697(71)90436-2
  17. Takata L., K. Yamato, T. Tosa, and J. Chibata (1980), Emzyme Microb. Technol, 2, 30-36 https://doi.org/10.1016/0141-0229(80)90005-8
  18. West, D. W (1977), A simple method for the isolation of a phosphopeptide from bovine as 1-Casein, J. Dairy Research, 44, 373-377 https://doi.org/10.1017/S0022029900020331
  19. Willi Ellenberger and Holger Blum (1981), Method for the hydrolysis of milk protein, US Patent, 4(261), 882