Performance Evaluation of Bio-Membrane Hybrid Process for Treatment of Food Waste Leachate

음식물 침출수 청정화를 위한 파일롯 규모의 생물-분리막 복합공정의 성능 평가 연구

  • Lee, Myung-Gu (Green Engineering Team, Korea Institute of Industrial Technology(KITECH)) ;
  • Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Do-Hoon (Green Engineering Team, Korea Institute of Industrial Technology(KITECH)) ;
  • Kim, Tak-Hyun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute(KAERI)) ;
  • Lee, Byung-Hwan (Department of Chemical System Engineering, Keimyung University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Sang-Yong (Green Engineering Team, Korea Institute of Industrial Technology(KITECH))
  • 이명구 (한국생산기술연구원 청정공정팀) ;
  • 박철환 (광운대학교 화학공학과) ;
  • 이도훈 (한국생산기술연구원 청정공정팀) ;
  • 김탁현 (한국원자력연구원 방사선과학연구소) ;
  • 이병환 (계명대학교 화학시스템공학과) ;
  • 이진원 (서강대학교 화공생명공학부) ;
  • 김상용 (한국생산기술연구원 청정공정팀)
  • Published : 2008.02.29

Abstract

In this study, a combined process of sequential anaerobic-aerobic digestion (SAAD), fluidized-bed bioreactor (FBBR), and ultrafiltration (UF) for the treatment of small scale food waste leachate was developed and evaluated. The SAAD process was tested for performance and stability by subjecting leachate from food waste to a two-phase anaerobic digestion. The main process used FBBR composed of aerators for oxygen supply and fluidization, three 5 ton reaction chambers containing an aerobic mesophilic microorganism immobilized in PE (polyethylene), and a sedimentation chamber. The HRTs (hydraulic retention time) of the combined SAAD-FBBR-UF process were 30, 7, and 1 day, and the operation temperature was set to the optimal one for microbial growth. The pilot process maintained its performance even when the CODcr of input leachate fluctuated largely. During the operation, average CODcr, TKN, TP, and salt of the effluent were 1,207mg/L, 100mg/L, 50 mg/L, and 0.01 %, which corresponded to the removal efficiencies of 99.4%, 98.6%, 89.6%, and 98.5%, respectively. These results show that the developed process is able to manage high concentration leachate from food waste and remove CODcr, TKN, TP, and salt effectively.

본 연구에서는 오염부하량이 높고, 유입수별 변동폭이 큰 음식물 침출수를 현장조건에서 처리하기 위한 혐기/호기 연속회분반응 (SAAD), 유동층 생물반응 (FBBR) 및 막분리(UF) 결합공정을 개발하고 이의 성능을 평가하였다. 공정 설계시 고려된 사항은 초기 고농도 오염부하의 처리에 적합한 초기 공정의 검토를 위한 이상혐기소화조와 상향류식 혐기성 슬러지 블랑켓트 (UASB)을 비교하여 현장조건에 적용 가능한 단상혐기소화조 (SAAD1)와, 높은 유기물 처리효율 능을 가진 호기소화조 (SAAD2)를 결합한 혐기/호기 연속회분공정을 선정하였다. 또한, 총질소 (TKN), 총인 (TP)의 제거효율을 극대화하기 위한 공기폭기조를 적용한 FBBR을 도입하였으며, salt 오염원을 완전히 제거하기 위한 UF조를 도입하였다. 본 공정의 처리 결과는 유입 음식물 침출수의 화학적 산소요구량 (CODcr)의 변동폭이 큼에도 불구하고, 파일롯 공정은 안정된 처리능을 보였다. 본 연구에 사용된 유입수의 CODcr, TKN, TP, salt의 평균값은 204,166 mg/L, 7,500 mg/L, 540 mg/L, 0.65%였으며, 처리수는 1,207 mg/L, 100 mg/L, 50 mg/L, 0.01%로 각각의 최종 제거효율은 99.4%, 98.6%, 89.6%, 98.5%의 결과를 나타내었으며, pH는 다소 증가하는 경향을 나타내었다. 이와 더불어, 본 공정의 처리 수는 염분 및 독성물질이 미함유된 고영양 처리수로써 액상비료나 재자원화 공정 (퇴비화) 중 필요한 용수로 사용이 가능한 것으로 조사되었다. 최종적으로 파일롯 규모의 생물-분리막 복합공정은 오염부하가 심하고 유입 부하량 변동폭이 큰 현장조건에서 우수한 처리성능 및 시스템의 안정성을 나타내었으며, 부가적으로 발생되는 메탄가스와 처리수의 재자원화의 장점을 가지며, 현장조건에서 음식물 침출수의 무배출-청정처리가 가능함을 확인하였다.

Keywords

References

  1. Rogoshewski, P., H. Bryson, and K. Waner (1983), Technology for waste disposal sites. Noyes data corporation park ridge, NJ
  2. Kim, P. J., K. W. Chang, and K. H. Min (1995), Evaluation of the stability of compost made from food wastes by the fermenting tank, J. KOWREC. 3, 35-42
  3. Boyle, W. C. and R. K. Ham (1974), Biological treatability of landfill leachate, J. Water Pol. Cont. Fed. 48, 860-872
  4. Robinson, H. D. and G. Grantham (1988), The treatment of landfill leachates in on-site aerated lagoon plants; experience in Britain and Ireland, Wat. Res. 22, 733-747 https://doi.org/10.1016/0043-1354(88)90184-4
  5. Robinson, H. D. and P. J. Maris (1983), The treatment of leachates from domestic wastes in landfills_I: Aerobic biological treatment of a medium-strength leachate, Wat. Res. 17, 1537-1548 https://doi.org/10.1016/0043-1354(83)90010-6
  6. Berrueta, J. and L. Castrillin (1992), Anaerobic treatment of leachates in USAB reactors, J. Chem. Technol. Biotech. 54, 33-37
  7. Christensen, T. H., R. Cossu, and R. Stegmann (1992), Anaerobic USAB reactor: laboratory experiments, in landfilling of waste: leachate, p245-263 , Elsevier science publisher LTD, London
  8. Kennedy, K. J., M. F. Harnoda, and S. G. Guiot (1988), Anaerobic treatment of leachate using fixed film and sludge bed systems, J. Water Pol. Cont. Fed. 60, 1675-1683
  9. Kim , M. Y. and I. S. Kim (1999), The effects of organic compounds in Pure-Oxygen Biofilm (POB) precess, Environ. Eng. Res. 21, 119-130
  10. Knudson, M. F., K. J. Williamson, and P. O. Nelson (1982 ),Influence of dissolved oxygen on substrate utilization kinetics of activated sludge, J. Water Pol. Cont. Fed. 54, 52-59
  11. Karrer , N. J., G. Ryhiner , and E. Heinzel (1977), Applicability test for combined biological-chemical treatment. of wastewaters containing biorefractory compounds, Wat. Res. 31, 1013-1020
  12. Kwon, J. C., H. S. Park, J. Y. An, K. B. Shin, Y. H. Kim, and H. S. Shin (2005), Biological nutrient removal in simple dual sludge system with an UMBR (upflow mutly-Iayer bioreactor) and aerobic biofilm reactor, Wat. Sci. Tech. 52, 443-451 https://doi.org/10.2166/wst.2005.0722
  13. Ministry of Environment (2002), Korean standard methods for the examination of water and wastewater, p.691, Dong hwa technology publishing Co., Seoul
  14. Gu, X. S. (1993), Mathematic models for wastewater bio-treatment[M], 2nd ed., Tsinghua university press, Beijing
  15. Zitomer, D. H. and R. E. Speece (1993), Sequential environments for enhanced bio-transformation of aqueous contaminaunts, Environ. Sci. Tech. 27(2), 27-38
  16. Welt , B. and W. Rauch (2003), The role of inorganic carbon limitation in biological nitrogen removal of extremely ammonia concentrated wastewater, Wat. Res. 37, 1100-1110 https://doi.org/10.1016/S0043-1354(02)00440-2
  17. Wild , H. E., C. N. Sawer, and T. C. McMhan (1971 ), Factors affecting nitrification kinetics, JWPCF. 43, 1845-1854
  18. Randall, C. W., J. L. Barnard, and H. D Stensel (1992), Water quality management library, In Design and retrofit of wastewater treatment plants for biological nutrient removal 5, Technomic publisher, Pennsylvania