압력감응페인트를 이용한 평판에서의 막냉각 계수 측정

Measurement of the Film Cooling Effectiveness on a Flat Plate using Pressure Sensitive Paint

  • 박승덕 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이기선 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김학봉 (한국항공대학교 항공우주 및 기계공학부) ;
  • 곽재수 (한국항공대학교 항공우주 및 기계공학부) ;
  • 김재환 (한국항공우주연구원 엔진개발팀)
  • 발행 : 2008.10.30

초록

본 연구에서는 압력감응페인트를 이용하여 평판에서의 막냉각 계수를 측정하였다. 6개의 막냉각 홀을 평판에 대해 30도의 각도를 갖도록 제작하였고, 평균 분사비는 0.5, 1, 2로 하였다. 그 결과, 압력감응페인트 기법으로 막냉각 계수의 분포를 성공적으로 측정할 수 있었고, 실험 결과는 기존의 참고 문헌의 결과와 유사한 경향을 보였다. 막냉각 홀 근처의 막냉각 계수는 분사비가 낮은 경우가 더 높게 나타났다. 분사비가 증가할수록 막냉각 홀 근처의 막냉각 계수는 낮아졌는데, 이는 높은 냉각 유체의 모멘텀에 의해 막냉각 유체가 주유동의 경계층을 뚫고 표면에서 멀어지기 때문이다. 하류에서는 높은 분사비의 경우가 높은 막냉각 계수를 보였는데, 이것은 막냉각 유체가 표면에 재부착되기 때문이다.

The film cooling effectiveness on a flat plate measured by pressure sensitive paint technique. Six film cooling hole were fabricated on a flat plate with 30 degree angle with respect to the surface and three blowing ratios of 0.5, 1, and 2 were tested. Results showed that PSP technique successfully evaluated the distribution of film cooling effectiveness and showed similar results with references. The film cooling effectiveness near the film cooling holes was higher for lower blowing ratio case. As the blowing ratio was increased, the film cooling effectiveness near the film cooling hole decreased due to the lift off of the coolant. At far downstream, the film cooling effectiveness for higher blowing ratio was higher due to the coolant reattachment.

키워드

참고문헌

  1. Han, J. C., Dutta, S., and Ekkad, S. V., 2000, Gas Turbine Heat Transfer and Cooling Technology, Taylor & Francis, New York
  2. Rhee, D. H., Kim, B. G., and Cho, H. H., 'Effect of Stream Turbulence Intensity on Heat/Mass Transfer Characteristics Around a Film Cooling Hole,' Journal of the Korean Society of Propulsion Engineers, v.2 no.2, 1998, pp.56-63
  3. Liu, T. and Sullivan, J. P., 2005, Pressure and Temperature Sensitive Paint, Springer
  4. Morris, M., Donovan, J., Schwab, S., Levy, R., and Crites, R., 1995, 'Aerodynamic Applications of Pressure Sensitive Paint,' AIAA paper No. 92-0264
  5. McLachlan, B., and Bell, J., 1995, 'Pressure Sensitive Paint in Aerodynamic Testing,' EXP. Therm. Fluid Sci., 10, pp.470-485 https://doi.org/10.1016/0894-1777(94)00123-P
  6. hang, L. J., and Fox, M., 1999, 'Flat Plate Film cooling Measurement Using PSP and Gas Chromatography Techniques,' Proc. Fifth ASME/JSME joint Thermal engineering Conference, Sen Diego, CA
  7. Zhang, L. J., Blatz, M., Pudupatty, R., and Fox, M., 1999, 'Turbine Nozzle Film Cooling Study Using the Pressure Sensitive Paint(PSP) Technique,' ASME Paper No. 99-GT-196
  8. Zhang, L. J., Jaiswal, R. S., 2001, 'Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint,' ASME J. of Turbomachinery, 123, pp.730-738 https://doi.org/10.1115/1.1400113
  9. Ahn, J. Y., S. Mhetras., Han, J. C., 2004, 'Film-Cooling Effectiveness On a Gas Turbine Blade Tip Using Pressure Sensitive Paint,' ASME Paper No. GT2004-53249
  10. Dunn, P. F., 2004, 'Measurement and Data Analysis for Engineering and Science,' McGraw-Hill
  11. Mayhew, J. E., Baughn, J. W., and Byerley, A. R., 2003, 'The effect of freestream turbulence on film cooling adiabatic effectiveness,' International Journal of Heat and Fluid Flow, 24, pp.669-679 https://doi.org/10.1016/S0142-727X(03)00081-X
  12. Schmidt, D. L., Sen, B., Bogard, D. G. 1996, 'Film cooling with compound angle hole: adiabatic effectiveness,' ASME J. of Turbomachinery, 118. pp.807-813 https://doi.org/10.1115/1.2840938