DOI QR코드

DOI QR Code

Characteristics of Plasma Electrolytic Oxide Coatings on Mg-Al Alloy with Coating Time

피막처리 시간에 따른 Mg-Al 합금의 플라즈마 전해 산화 피막 특성

  • Lee, Du-Hyung (Department of Materials Engineering, Korea Aerospace University) ;
  • Kim, Bo-Sik (Department of Materials Engineering, Korea Aerospace University) ;
  • Chang, Si-Young (Department of Materials Engineering, Korea Aerospace University)
  • 이두형 (한국항공대학교 항공재료공학과) ;
  • 김보식 (한국항공대학교 항공재료공학과) ;
  • 장시영 (한국항공대학교 항공재료공학과)
  • Published : 2008.05.27

Abstract

Pure Mg and Mg-6wt.%Al alloy were coated by the plasma electrolytic oxidation with various coating times and the microstructural and mechanical characteristics of the coatings were investigated. The coatings on pure Mg and Mg-6wt.%Al alloy consisted of MgO and $Mg_2SiO_4$. The surface roughness and thickness of the coatings became larger as the coating time increased. The coatings on the Mg-6wt.%Al alloy were more uniform and thicker than those on pure Mg. The microhardness and friction coefficient of the coatings increased progressively as the coating time increased. In addition, the coatings on the Mg-6wt.%Al alloy compared to pure Mg showed improved microhardness and a better friction coefficient.

Keywords

References

  1. Y. Kojima and S. Komado, Mater. Sci. Forum, 488, 9 (2005) https://doi.org/10.4028/www.scientific.net/MSF.488-489.9
  2. T. M. Yue, Q. W. Hu, Z. Mei and H. C. Man, Mater. Lett., 47, 165 (2001) https://doi.org/10.1016/S0167-577X(00)00230-5
  3. W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., p.541, McGraw-Hill Science, New York, U.S.A., (1993)
  4. H. F. Guo, M. Z. An, H. B. Huo, S. Xu and L. J. Wu, Appl. Surf. Sci., 252, (2006) https://doi.org/10.1016/j.apsusc.2005.09.067
  5. M. Avedisian and H. Baker, ASM Specialty Handbook, p.194, ASM International, Ohio, USA, (1999)
  6. D. J. Sakkinen, SAE Techical Paper Series, 940779, 72 (1994)
  7. J. Bohlen, F. Chmelik, P. Dobro , D. Letzig, P. Luka and K. U. Kainer, J. Alloy & Compounds., 378, 214 (2004) https://doi.org/10.1016/j.jallcom.2003.10.101
  8. H. Guo, M. An, S. Xu and H. Huo, Mater. Lett., 60, 1538 (2006) https://doi.org/10.1016/j.matlet.2005.11.066
  9. H. Y. Hsiao, H. C. Tsung and W. T. Tsai, Surf. Coat. Tech., 199, 127 (2005) https://doi.org/10.1016/j.surfcoat.2004.12.010
  10. D. P. Barbosaa, G. Knornschilda and H. P. Strunkb, Mater. Res., 6, 103 (2003) https://doi.org/10.1590/S1516-14392003000100018
  11. I. Montero and M. Fernandez, J. M. Albella, Electrochem. Acta, 32, 171 (1987) https://doi.org/10.1016/0013-4686(87)87028-7
  12. S. Ikonopisov, Electrochem. Acta, 22, 1077 (1977) https://doi.org/10.1016/0013-4686(77)80042-X
  13. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Surf. Coat. Tech., 122, 73 (1999) https://doi.org/10.1016/S0257-8972(99)00441-7
  14. A. L. Yerokhin, X. Nie, A. Leyland and A. Matthews, Surf. Coat. Tech., 130, 195 (2000) https://doi.org/10.1016/S0257-8972(00)00719-2
  15. J. A. Curran and T. W. Clyne, Surf. Coat. Tech., 199, 177 (2005) https://doi.org/10.1016/j.surfcoat.2004.11.045
  16. Japan Inst. of Magnesium, Handbook of Advanced Magnesium Technology, p.343, Kallos Publishing Co., Tokyo, Japan, (2000)
  17. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou and T. Xu, Appl. Surf. Sci., 252, 345 (2005) https://doi.org/10.1016/j.apsusc.2005.01.007
  18. H. Duan, C. Yan and F. Wang, Electrochem. Acta, 52, 249 (2007)
  19. Z. Wu, Y. Xia, G. Li and F. Xu, Appl. Surf. Sci., 253, 8398 (2007) https://doi.org/10.1016/j.apsusc.2007.04.007