DOI QR코드

DOI QR Code

Single Wall Carbon Nanotube Films Produced by Arc Discharge

아크 방전법으로 성장된 대면적 단일벽 탄소나노튜브 필름

  • Kang, Young-Jin (School of Nano Science and Technology, Chungnam National University) ;
  • Oh, Dong-Hoon (School of Nano Science and Technology, Chungnam National University) ;
  • Song, Hye-Jin (School of Nano Science and Technology, Chungnam National University) ;
  • Jung, Jin-Yeun (School of Nano Science and Technology, Chungnam National University) ;
  • Jung, Hyuk (School of Nano Science and Technology, Chungnam National University) ;
  • Cho, You-Suk (School of Nano Science and Technology, Chungnam National University) ;
  • Kim, Do-Jin (School of Nano Science and Technology, Chungnam National University)
  • 강영진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 오동훈 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 송혜진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 정진연 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 정혁 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Published : 2008.05.27

Abstract

A simple method to deposit carbon nanotube films uniformly on large area substrates using an arc discharge method is reported in this paper. The arc discharge method was modified to deposit carbon nanotube films in situ on the substrates. The substrates were scanned several times over the arcing point for a uniform film thickness. Deposition was carried out under variable dc bias conditions at 600 torr of $H_2$ gas. The thickness uniformity of the single-wall carbon nanotube films as characterized by a four-point probe was within 30% deviation. The morphology and crystal quality of the single-wall carbon nanotube film were also characterized by field emission scanning electron microscopy and Raman spectroscopy.

Keywords

References

  1. M. S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.), Carbon Naontubes : Synthesis, Structure, Properfies and Applications, Springer, Berlin (2001)
  2. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Applied Physics Letters, 73, 2447 (1998) https://doi.org/10.1063/1.122477
  3. T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, Nano Letters, 4, 35 (2004) https://doi.org/10.1021/nl034841q
  4. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science, 305, 1273 (2004) https://doi.org/10.1126/science.1101243
  5. S. H. Shiau, C. W. Liu, C. Gau, B. T. Dai, Nanotechnology, 19, (2008)
  6. N. F. Anglada, M. kaempgen, V. Skakalova, U. D. Weglikowska, S. Roth, Diamond and Related Materials, 13, 256 (2004) https://doi.org/10.1016/j.diamond.2003.10.026
  7. J. Li, W. Lei, X. Zhang, X. zhou, Q. Wang, Y. Zhang, B. Wang, Applied Surface Science, 220, 96 (2003) https://doi.org/10.1016/S0169-4332(03)00749-9
  8. L. Hu, D. S. Hecht, G. Gruner, Nano Letters, 4, 2513 (2004) https://doi.org/10.1021/nl048435y
  9. M. A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M. L. Usrey, M. S. Strano, J. A. Rogers, Nano Letters, 4, 1643 (2004) https://doi.org/10.1021/nl0491935
  10. C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, B. L. Zhou, Carbon, 37, 1865 (1999) https://doi.org/10.1016/S0008-6223(99)00196-7
  11. B. P. Tarasov, V. E. Muradyan, Y. M. Shul'ga, E. P. Krinichnaya, N. S. Kuyunko, O. N. Efimov, E. D. Obraztsova, D. V. Schur, J. P. Maehlen, V. A. Yartys, H. J. Lai, Carbon, 41, 1357 (2003) https://doi.org/10.1016/S0008-6223(03)00060-5
  12. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Shang, S. Iijima, S. Zhou, K. T. Yue, S. Zhang, Carbon, 37, 1449 (1999) https://doi.org/10.1016/S0008-6223(99)00007-X
  13. E. Bekyarova, M. E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, R. C. Haddon, J. AM. CHEM. SOC, 127, 5990 (2005) https://doi.org/10.1021/ja043153l