DOI QR코드

DOI QR Code

Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode

탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향

  • Jung, Hyuk (Department of Materials engineering, Chungnam National University) ;
  • Cho, You-Suk (Department of Materials engineering, Chungnam National University) ;
  • Kang, Young-Jin (Department of Materials engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials engineering, Chungnam National University)
  • 정혁 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 강영진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Published : 2008.05.27

Abstract

The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

Keywords

References

  1. C. A. Spindt, I. Brodie, L. Humphrey, ER Westerberg, J. Appl. Physics, 47, 5248 (1976) https://doi.org/10.1063/1.322600
  2. R. Meyer, Tech. Dig. Euro Disp., 90, 26 (1990)
  3. N. Kumar, SID 1994 Dig. Tech. Pap., 43 (1994)
  4. W. P. Dyke, W.W. Dolan, Adv. In Electronics and Electron Phys, 8, 90 (1956)
  5. I. Brodie, J. Appl. Phys, 35, 2324 (1964) https://doi.org/10.1063/1.1702858
  6. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  7. A Javey, J Guo, Q Wang, M Lundstrom, H Dai, Nature, 424, 654 (2003) https://doi.org/10.1038/nature01797
  8. W. A. de Heer, A. Chatelain, D. Ugarte, Science, 270 (5239), 1179, (1995) https://doi.org/10.1126/science.270.5239.1179
  9. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  10. Y. D. Lee, SID 2005, Dig. Tech. Pap., 1617 (2005)
  11. E. J. Chi, SID 2005, Dig. Tech. Pap., 1620 (2005)
  12. J. H. Park, J. H. Choi, J. S. Moon, J. B. Yoo, H. Y. Kim, Carbon, 43, 698 (2005) https://doi.org/10.1016/j.carbon.2004.10.036
  13. K. Hata, A. Takakura, Y. Saito, Utlramicroscopy, 95, 107 (2003) https://doi.org/10.1016/S0304-3991(02)00304-2
  14. K. Hata, A. Takakura, Y. Saito, Utlramicroscopy, 95, 107 (2003) https://doi.org/10.1016/S0304-3991(02)00304-2
  15. J. D. Lee, C. W. Oh, B. G. Park, J. Vac. Sci. Technol, B 21, 1071 (2003) https://doi.org/10.1126/science.282.5391.1105
  16. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, Science, 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  17. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Appl. Phys. Lett., 75, 3129 (1999) https://doi.org/10.1063/1.125253
  18. H. J. Jeong, Carbon, 44, 2689 (2006) https://doi.org/10.1016/j.carbon.2006.04.009
  19. W. P. Dyke, W. W. Dolan, Adv. In Electronics and Electron Phys., 8, 153 (1956)
  20. M. G. Ancona, IEDM Tech. Dig., 803 (1994)