DOI QR코드

DOI QR Code

Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study

인과관계 지식 모델링을 위한 퍼지인식도와 베이지안 신뢰 네트워크의 비교 연구

  • ;
  • 김경윤 ;
  • 양형정 (전남대학교 전자컴퓨터공학부 조교수) ;
  • 김수형 (전남대학교 전자컴퓨터정보통신공학부) ;
  • 김정식 (전남대학교 전자컴퓨터공학부)
  • Published : 2008.04.30

Abstract

Fuzzy Cognitive Map (FCM) and Bayesian Belief Network (BBN) are two major frameworks for modeling, representing and reasoning about causal knowledge. Despite their extensive use in causal knowledge engineering, there is no reported work which compares their respective roles. This paper aims to fill the gap by providing a qualitative comparison of the two frameworks through a systematic analysis based on some inherent features of the frameworks. We proposed a set of comparison criteria which covers the entire process of causal knowledge engineering, including modeling, representation, and reasoning. These criteria are usability, expressiveness, reasoning capability, formality, and soundness. The results of comparison have revealed some important facts about the characteristics of FCM and BBN, which will help to determine how FCM and BBN should be used, with respect to each other, in causal knowledge engineering.

본 논문에서는 인과관계 지식의 표현과 추론에 가장 대표적으로 사용되는 퍼지인식도(FCM, Fuzzy Cognitive Map)와 베이지안 신뢰 네트워크(BBN, Bayesian Belief Network)를 구조적으로 분석한다. 퍼지인식도와 베이지안 신뢰 네트워크는 의사 결정을 지원하는데 중요한 인과관계 지식을 표현하고 추론하는데 사용되는 가장 대표적인 프레임워크이지만 인과관계 지식응용 영역에서 두 프레임워크의 역할에 대한 구조적 비교 연구는 이루어지지 않고 있다. 본 논문에서는 두 프레임워크의 구조적 비교를 통해 퍼지인식도와 베이지안 신뢰 네트워크의 중요한 특징들을 추출하고, 이를 통해 인과 지식 공학에서 어떻게 퍼지 인식도와 베이지안 신뢰 네트워크가 이용되어야 하는지를 보인다. 인과관계 지식의 표현과 추론의 과정을 평가하는데 비교 평가를 위한 항목으로서 본 논문에서는 사용성, 표현력, 추론능력, 정형화와 완결성이 사용되었다.

Keywords

References

  1. A. Gopnik, C. Glymour, “Causal Maps and Bayes Nets: A Cognitive and Computational Account of Theory-Formation,” In: P. Carruthers, S. Stich, M. Siegal, Eds., The Cognitive Basis of Science, Cambridge University Press, pp. 117-132, 2002
  2. A. Gopnik, C. Glymour, D.M. Sobel, L.E. Schulz, T. Kushnir, D. Danks, “A Theory of Causal Learning in Children: Causal Maps and Bayes Nets,” Psychological Review, Vol. 111, No. 1, pp. 3-32, 2004 https://doi.org/10.1037/0033-295X.111.1.3
  3. Z.Q. Liu, “Causation, Bayesian Networks and Cognitive Maps,” ACTA Automatica Sinica, Vol. 27, No. 4, pp.552-566, 2001
  4. L. M. Deborah, F. P. Peter, “Usability Issues in Knowledge Representation Systems,” Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, pp. 608-614, 1998
  5. A. Holzinger, “Usability Engineering for Software Developers,” ACM Communications, Vol. 48, No. 1, pp. 71-74, 2005 https://doi.org/10.1145/1039539.1039541
  6. H.J. Levesque, R.J. Brachman, “Expressiveness and Tractability in Knowledge Representation and Reasoning,” Computational Intelligence, Vol. 3, No. 2, pp. 78-93, 1987 https://doi.org/10.1111/j.1467-8640.1987.tb00176.x
  7. R. Bingi, K. Deepak, B. Surya, “A Framework for the Comparative Analysis and Evaluation of Knowledge Representation Schemes,” Journal of Information Processing and Management, Vol. 31, No. 2, pp. 233-247, 1995 https://doi.org/10.1016/0306-4573(94)00042-2
  8. R. Bingi, K. Deepak, B. Surya, “A Framework for the Comparative Analysis and Evaluation of Knowledge Representation Schemes,” Journal of Information Processing and Management, Vol. 31, No. 2, pp. 233-247, 1995 https://doi.org/10.1016/0306-4573(94)00042-2
  9. S. Kendal, M. Creen, “An Introduction to Knowledge Engineering,” Springer, 2007
  10. C.G. Cordell, “Formality Helps Scalability and Robustness,” ACM Computing Surveys, Vol. 28, No. 4es, pp. 5-5, 1996 https://doi.org/10.1145/242224.242231
  11. S.M. Frank, C.C. Marshall, “Formality Considered Harmful: Experiences, Emerging Themes, and Directions on the Use of Formal Representations in Interactive Systems,” Computer Supported Cooperative Work, Vol. 8, No. 4, pp. 333-352, 1999 https://doi.org/10.1023/A:1008716330212
  12. R. Axelrod, Structure of Decision: The Cognitive Maps of Political Elites, Princeton, NJ, 1976
  13. B. Kosko, “Fuzzy Cognitive Maps,” International Journal of Man-Machine Studies, Vol. 24, No. 1, pp. 65-75, 1986 https://doi.org/10.1016/S0020-7373(86)80040-2
  14. B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, 1992
  15. J.P. Carvalho, J.A.B. Tome, “Rule-Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps: A Comparative Study,” Proceedings of the International Conference of the North American Fuzzy Information Processing Society, pp. 115-119, 1999
  16. J. Aguilar, “A Survey about Fuzzy Cognitive Maps Papers,” International Journal of Computational Cognition, Vol. 3, No. 2, pp. 27-33, 2005
  17. K.C. Lee, H.S. Kim, “A Fuzzy Cognitive Map-Based Bi-Directional Inference Mechanism: An Application to Stock Investment Analysis,” Intelligent Systems in Accounting Finance & Management, Vol. 6, No. 1, pp. 41-57, 1997 https://doi.org/10.1002/(SICI)1099-1174(199703)6:1<41::AID-ISAF119>3.0.CO;2-J
  18. Z.Q. Liu, R. Satur, “Contextual Fuzzy Cognitive Map for Decision Support in Geographic Information Systems,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 5, pp. 495-507, 1999 https://doi.org/10.1109/91.797975
  19. I. Kang, S. Lee, J. Choi, “Using Fuzzy Cognitive Map for the Relationship Management in Airline Service,” Expert Systems with Applications, Vol. 26, No. 4, pp. 545-555, 2004 https://doi.org/10.1016/j.eswa.2003.10.012
  20. F. Sumita, A. Gopal, R. Timothy, “A Fuzzy Cognitive Mapping Analysis of the Impacts of An Eco-Industrial Park,” Journal of Intelligent and Fuzzy Systems, Vol. 15, No. 2, pp. 75-88, 2004
  21. V. Georgopoulos, C.D. Stylios, “Augmented Fuzzy Cognitive Maps Supplemented with Case Base Reasoning for Advanced Medical Decision Support,” Soft Computing for Information Processing and Analysis Enhancing the Power of the Information Technology. In: M. Nikravesh, L.A. Zadeh, J. Kacprzyk, Eds., Studies in Fuzziness and Soft Computing, pp. 389-398, 2005 https://doi.org/10.1007/3-540-32365-1_17
  22. K.Y. Kim, K.C. Lee, “The Role of the Fuzzy Cognitive Map in Hierarchical Semantic Net Model-Based Assembly Design Decision Making,” International Journal of Computer-Integrated Manufacturing, accepted
  23. J. Pearl, “Fusion, Propagation, and Structuring in Belief Networks,” Artificial Intelligence, Vol. 29, No. 3, pp. 241-288, 1986 https://doi.org/10.1016/0004-3702(86)90072-X
  24. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference, Morgan Kaufmann, 1988
  25. E. Charniak, “Bayesian Networks Without Tears,” AI Magazine, Vol. 12, No. 4, pp. 50-63, 1991
  26. W. Long, “Medical Diagnosis Using A Probabilistic Causal Network,” Applied Artificial Intelligence, Vol. 3, No. 2-3, pp. 367-383, 1989 https://doi.org/10.1080/08839518908949932
  27. E. Horvitz, J. Breese, D. Heckerman, D. Hovel, K. Rommelse, “The Lumiere Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users,” Proceedings of the Conference of the Uncertainty in Artificial Intelligence, pp. 256-265, 1998
  28. C. Skaanning, F. Jensen, U. Kjaerulff, “Printer Troubleshooting Using Bayesian Networks,” In: R. Loganantharaj, G. Palm, Eds., Intelligent Problem Solving, Methodologies and Approaches, LNCS 1821, pp. 367-379, 2000 https://doi.org/10.1007/3-540-45049-1_45
  29. A. Tang, A. Nicholson, Y. Jin, J. Han, “Using Bayesian Belief Networks for Change Impact Analysis in Architecture Design,” Journal of Systems and Software, Vol. 80, No. 1, pp. 127-148, 2007 https://doi.org/10.1016/j.jss.2006.04.004
  30. Hugin Expert: http://www.hugin.com/ (Accessed: Nov 10, 2007)
  31. Norsys: http://www.norsys.com/netica.html (Accessed: Nov 10, 2007)
  32. K.B. Korb, A.E. Nicholson, Bayesian Artificial Intelligence, Chapman and Hall/CRC, 2004
  33. B. Das, “Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem,” Journal CoRR, cs.AI/0411034, 2004
  34. S. Nadkarni, P. Shenoy, “A Bayesian Network Approach to Making Inferences in Causal Maps,” European Journal of Operational Research, Vol. 128, No. 3, pp. 479-498, 2001 https://doi.org/10.1016/S0377-2217(99)00368-9
  35. S. Nadkarni, P. Shenoy, “A Causal Mapping Approach to Constructing Bayesian Networks,” Decision Support Systems, Vol. 38, No. 2, pp. 259-281, 2004 https://doi.org/10.1016/S0167-9236(03)00095-2
  36. R. Kremer, “Visual Languages for Knowledge Representation,” Proceedings of the Workshop on Knowledge Acquisition, Modeling and Management, pp. 8-14, 1998
  37. B. Kosko, “Fuzzy Systems as Universal Approximators,” Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1153-1162, 1992
  38. J.A. Dickerson, B. Kosko, “Virtual Worlds in Fuzzy Cognitive Maps,” In B. Kosko, Ed., Fuzzy Engineering, Prentice Hall, pp. 498-528, 1997
  39. W.P. Cheah, K.Y. Kim, H.J. Yang, S.Y. Choi, H.J. Lee, “A Manufacturing-Environmental Model using Bayesian Belief Networks for Assembly Design Decision Support,” In: H.G. Okuno, M. Ali, Eds., New Trends in Applied Artificial Intelligence, LNAI 4570, pp. 374-383, 2007 https://doi.org/10.1007/978-3-540-73325-6_37
  40. K.Y. Kim, Y.S. Kim, W.P. Cheah, H.J. Yang, “A Framework of Assembly Design and Maintenance Analysis and Fault Diagnosis using Bayesian Belief Network and Fuzzy Cognitive Map,” Proceedings of the International Conference on Flexible Automation and Intelligent Manufacturing, pp. 757-764, 2007

Cited by

  1. Evaluation module based on Bayesian networks to Intelligent Tutoring Systems vol.37, pp.1, 2017, https://doi.org/10.1016/j.ijinfomgt.2016.05.007
  2. User stories complexity estimation using Bayesian networks for inexperienced developers 2017, https://doi.org/10.1007/s10586-017-0996-z