A Study on Vulcanization of EPDM by Far-infrared

원적외선에 의한 EPDM의 가교 특성 연구

  • Bae, J.W. (Rubber Material Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Kim, J.S. (Rubber Material Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Lee, J.H. (Rubber Material Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Jung, W.S. (Rubber Material Research Division, Korea Institute of Footwear & Leather Technology) ;
  • Park, H.C. (Intelligent & Precision Machinery Research Division, Korea Institute of Machinery & Materials) ;
  • Kang, D.P. (Nano Composite Materials Research Group, Korea Electrotechnology Research Institute)
  • 배종우 (한국신발.피혁연구소 고무재료연구부) ;
  • 김정수 (한국신발.피혁연구소 고무재료연구부) ;
  • 이진혁 (한국신발.피혁연구소 고무재료연구부) ;
  • 정우선 (한국신발.피혁연구소 고무재료연구부) ;
  • 박희창 (한국기계연구원 지능형정밀기계연구본부) ;
  • 강동필 (한국전기연구원 재료응용연구단)
  • Published : 2008.03.31

Abstract

Far-infrared vulcanization of ethylene-propylene-diene terpolymer(EPDM) compounds has been studied in comparison with hot air vulcanization. Vulcanization characteristics of EPDM compounds were measured by degree of curing and temperature of specimens in vulcanization process. As a result, degree of curing by far-infrared of EPDM compounds was shown to be higher value than that by hot air at the same vulcanization temperature. Especially, degree of curing by far-infrared on 3 mm thickness of EPDM compounds was increased by two times compared to that by hot air. While the increase of thermal conductivity of EPDM compounds highly improved degree of curing by far-infrared, that hardly improved degree of curing by hot air.

DSC 및 컴파운드 온도 측정을 통해 원적외선에 의한 EPDM의 가교 반응을 연구하였으며, 특히 동일 조건에서의 열풍에 의한 가교 시험을 통해 원적외선 가교시의 효율성을 평가하였다. 원적외선 및 열풍에 의한 EPDM 컴파운드의 가교도를 분석한 결과, 동일 조건에서 원적외선가교 시료의 가교도가 열풍가교에 비해 높게 나타남을 확인할 수 있었으며, 특히 3 mm 두께 시편의 경우 약 2배가량 높은 가교도를 나타내었다. EPDM 컴파운드의 열전도도의 증가는 원적외선에 의한 가교도를 크게 증가시켰으나, 열풍에 의한 가교도의 변화에는 거의 영향을 주지 못하였다.

Keywords

References

  1. W. Hofmann, ''Rubber Teclmology Handbook", ed by W. Hofmann, p. 399, Oxford University Press, USA, 1989
  2. 조원제, 최세영, 유종선, 하창식, 윤정식 ?, "고무기술의 기초", p. 197, 한국신발 . 피혁연구소, 2000
  3. 박래준, "광선치료학", p. 10, 대학서림, 205
  4. 방인수, 이광익, "원적외선에 관한 고찰", 대한물리치료사협회지, 7(1), 41 (1986)
  5. 특허청, "원적외선 원료 및 응용제품", 신기술동향 조사보고서, 472, 2004
  6. V. J. Duchacek, "Effect of temperature on the course of thiuram-accelerated sulfur vulcanization", J Appl. Palm. Sci., 19, 1617 (1975) https://doi.org/10.1002/app.1975.070190613
  7. D. S. Chmnpbell, "Stuctural Characterization of Vulcanizates XI. Network-Bound Accelerator Residues", Rubber Chem. Technol., 44, 771 (1971) https://doi.org/10.5254/1.3544793
  8. M. Mooney, ''A Theory of Large Elastic Deformation", J. Appl. Phys., 11, 582 (1940) https://doi.org/10.1063/1.1712836
  9. G. Gee and S. H. Morrel, ''Quantitative Characterization of Cure IV. Definition and Measurement of Rate of Cure for Pure-Gum Natural-Rubber Compounds", Rubber Chem. & Technol. J, 25, 254, (1952)
  10. D. W. Brazier, C. H. Nickel, "Ihermoanalytical Methods in Vulcanizate Analysis I. Differential Scarming Calorimel:ty and the Heat of Vulcanization", Rubber Chem Technol., 48, 26 (1975) https://doi.org/10.5254/1.3545037
  11. M. L. Bhaumik, D. Banerjee, and A. K. Sircar, ''Studies in hard rubber reaction. Part II. Effect of organic accelerators", J. Appl. Pohn Sci., 9, 1367 (1965) https://doi.org/10.1002/app.1965.070090415
  12. J. K. Rabek, "Experimental Methods in Polymer Chemistry", John Wiley & Sons, New York, 1984
  13. 하창식, 조원제, "Dynamic DSC에 의한 고무의 가교 반응 해석", 28(2), 134 (1993)
  14. C. Y Park, J. K. Kim, and S. K. Min, "Microwave Application to the Vulcanization of Rubber Compound (I) The Heating Characteristics of White Carbon by Microwave", Elastomer, 32(5), 318 (1997)