Optimization of Sidewalls for a Double-Passage Cascade Experiment
Chong-Hyun Cho*, Kookyoung Ahn**, and Soo-Yong Cho***

ABSTRACT

In a linear cascade experimental apparatus, when it adopts only few blades as well as satisfies the periodic condition between blades, it gives several advantages in experiment. In this study, wall design on a cascade experimental apparatus is conducted to obtain the periodic condition on two blades installed within a passage of which the width is double pitch. The Mach number difference on the blade surface obtained with the periodic and wall condition is chosen as an objective function, and twelve design variables which are related to the wall shape are selected. A wall shape is designed using a gradient-based optimization method. Adjustment of range and weighting function are applied to calculate the objective function to avoid unrealistic evaluation of the objective function. By applying these methods, the computed results show same flow structures obtained with the periodic condition.

초 록

선형 캐스케이드 실험장치에서 블레이드간에 주기조건을 만족하면서 적은 개수의 블레이드를 적용하는 것은 실험의 정확도 향상뿐만 아니라 심험수행에 여러 장점을 제공한다. 따라서 본 연구에서는 유로를 캐스케이드 피치의 두 배 넓이로 설정하고 두 개의 블레이드만을 설치하였을 때 주기조건이 얻어지도록 하는 벽면의 형상설계에 관한 연구를 수행하였다. 이를 위하여 주기조건에서 얻어진 블레이드 표면에서의 마하수와 동일한 결과가 얻어지도록 목적함수를 설정하였으며, 설계변수로는 벽면의 형상과 관련이 있는 12개의 변수를 설정하였다. 벽면의 설계를 위하여 기울기 기반의 최적화법을 사용하였으며, 목적 함수에 민감한 변화를 나타내는 영역의 조정과 가중치를 사용하였다. 이러한 방식으로 얻어진 결과에서 주기조건과 동일한 유동특성이 얻어질 수 있음을 확인하였다.

Key Words : Double-Passage Cascade(2피치 유로 캐스케이드), Optimization(최적화), Linear Cascade(선형 캐스케이드), Turbomachinery(터보기계)

Ⅰ. 서 론

항공용 엔진의 설계나 해석에 있어서 CFD의 활용은 점차적으로 확대되어가고 있는 실정이며, 유동이 높은 압력에서 낮은 압력으로 호르는 로터나 노즐에서의 유동에서는 경계층이 없으며 유동의 해석에서 난류모델의 부인 해석결과의 차이가 크지 않다. 하지만, 블레이드의 냉각이 포함되
는 연장된 해석에서는 난류모델에 따라 유동해석의 결과에 차이가 많으므로 설계자들은 실험데이터에 크게 의존하고 있다[1]. 이러한 문제의 개선을 위하여 불레이드를 통가하는 유동에서의 난류특성, 불레이드의 곡률에 따른 유동의 영향, 전체 모수에서의 유동특성 등에 대한 세부적인 실험결과들이 요구되게 된다.

캐스케이드 실험장치에서는 측정하고자 하는 불레이드를 다수 개 설치하여 블레이드간에 동일 주기조건과 정해진 범위를 갖추는 것이 필수적이며[6-8]. 이를 위하여 불레이드의 출구측에 고리판을 설치하여 정지하거나, 실험장치의 훼손과 압력면으로부터 작동유체를 일부 제거하기도 한다. 아울러 설치된 범역에서 형성된 경계층 저해의 작업도 하여야 한다. 불레이드가 여러 개 설치되는 경우에는 공간영역의 확보를 위하여 큰 유량을 생산하는 장치가 요구될 뿐만 아니라 PIV와 같은 광학장치의 사용을 어렵게 하므로, 유형을 한 개 혹은 두 개의 불레이드를 설치하여 측정을 하였다[9,10]. 하지만 이러한 실험장치에서는 범역으로부터 훼손의 설명이나 고리판의 조정을 정확히 하기 어렵다[11,12].

범역 영향에 대한 해결방안으로, 피치 두 배의 유역에 두 개의 불레이드를 설치하게 되면, 불레이드 사이의 증간 피치영역은 범역으로부터의 영향이 최소화 되므로 주기조건과 동일한 유동장 을 얻게 된다[14]. 하지만 이 연구에서 목적함수의 계산에서, 위치에 따라 변동성이 큰 영역까지 적용하여 알려면에서의 목적함수가 과장되게 평가되어서 최적화된 결과는 흔히들에서 다소 차 이를 보였다. 본 연구에서는 이러한 문제점을 보완하고 보다 더 정확한 2피치 캐스케이드 실험장치의 범역 형상설계 방법을 제공하기 위한 연구를 수행하였다.

2. 설계변수 선정

2.1 비교대상 (VKI 블레이드에서의 실험)

본 연구를 위한 캐스케이드의 실험결과는 낮은 부하를 갖는 VKI 블레이드에서 수행된 결과를 사용하였다[15]. 상기의 실험은 다른 지역에 있는 풍동의 차이에 대한 실험결과 간의 차이를 확인하기 위하여 시도한 실험으로서 4개의 다른 기판에서 수행되었다. 각각의 실험은 비슷한 조건에서 수행되었으며, 본 연구에서는 4가지 실험(BS, OX, GO, RG)의 경우를 참조하여 임의유동장과 출구유동장을 각각 30°와 68°로 설정하였으며 스테이커는 33.3°로 설정하였다. 피치코더비는 0.71로 설정하였으며, 엔진에서의 난류강도는 0.5%를 주어 계산을 수행하였다.

2.2 초기벽면형상

캐스케이드의 계산을 위하여 초기 계산영역은 옆면(홈밀과 가까운 영역)과 아랫면(암벽면과 가까운 영역)이 피치를 기준으로 동일한 면에서 만기하려 하면 두면을 주기조건으로 처리하기 때문에 계산을 수행하려는 아무런 문제가 없 다. 하지만 실험장치에서는 캐스케이드의 주기조건 영역의 옆면과 아랫면 범역으로 변형하게 되면 이 범역은 주기조건으로 계산된 유동장과 아무런 상관관계가 없으므로 목적하는 주기조건으로 얻어진 유동장과 동일한 유동현상을 얻기까지는 많은 계산이 필요하게 된다.

적합한 초기의 범역을 설정하기 위하여 캐스케이드의 중간피치에서 얻어지는 유선을 기준으로 범역을 설정하였다. 이 경우에는 유동의 급격한 변화를 방지하기 되어 보다 빠르게 목적하는 유동협의를 찾을 수 있게 될 것이다. Fig. 1은 주기조건으로 얻어진 유동장에서 불레이드의 중간피치에 있는 유선과 이 유선을 기준으로 피치를 만한 위쪽과 아래쪽으로 이동하여 범역을 형성하 였을 때의 계산영역을 보여주고 있다.
Fig. 1. Computational region with the wall boundary on the upper and lower sides which are generated by the half pitch streamline

Fig. 2. Control points on the upper and lower walls to modify wall profile

2.3 설계변수의 선정

캐스케이드의 윗면과 아랫면을 Fig. 1에서처럼 유선을 바탕으로 형상화하였다고 하여도, 벽면에서 경계층의 형성으로 내부의 유동은 얼마나지는 된다. 따라서 벽면의 형상을 조정하면서 주기조건에서 얻어진 결과와 동일한 유동장을 어떻게 하기 위하여 벽면의 조정이 가능하도록 해주는데 나타내어야 한다. 이를 위하여 아랫면이나 윗면에 형상조정을 위한 제어점을 설정하고 제어점과의 연결은 3차원 곡선이나 직선을 사용하여 연결하도록 하였다. 따라서 이 제어점이 최적화를 위한 설계변수가 된다.

Fig. 2는 아랫면과 윗면의 벽면형상을 변경하기 위한 제어점의 위치를 나타내고 있으며, 각각의 제어점에서 y방향의 위치는 우선에 의하여 결정되어진다. x방향의 위치는 S1이나 P1의 경우 블레이드 전단에서 입구유동각의 방향으로 블레이드 코드의 1.2배 압축으로 설정하였으며, P2, S2, P2는 P1(S1, P2)과 동일하나 전단에서 블레이드 코드의 25% 압축에 설정하였다. S3은 블레이드 흡입면에서 y방향으로 가장 큰 값을 갖는 x의 위치와 전단의 x 위치 사이거리의 20% 거리를 전단뒤쪽에 선정하였으며, 반면에 P3는 블레이드의 압력면에서 y 방향으로 가장 높은 위치의 x 값과 전단의 x 위치 사이거리의 20% 거리를 전단뒤쪽에 선정하였다. 이렇게 한 이유는 유선이 블레이드로 인하여 회어지므로 이를 조정하기 위하여 전단 이 후의 위치에 제어점을 설치하였다.

P4(S4, P4)는 유선에서 y 방향으로 최대의 값을 갖는 위치로 선정하였으며, P5(S5, P5)의 경우는 P3과 마찬가지로 블레이드의 하단부분에서 유선의 변화가 발생되므로 설치된 제어점이다. P5의 x 위치는 블레이드에서 흡입면과 압력면에서의 y 방향으로의 최대위치를 갖는 x 위치와 후단과의 사이 거리의 20% 거리를 후단 상류방향에 설치하였다. P6(S6, P6)는 후단에서 출구유동각의 방향으로 블레이드 코드 25% 하류에 위치하도록 하였으며, P7(S7, P7)는 P6과 같은 방향이나 코드 2배의 거리만큼 하류에 위치시켰다.

상기의 제어점에서 P1과 P2 사이는 직선적으로 연결되며, P6과 P7 사이도 직선적으로 연결된다. 그리고 제어점과 제어점의 연관은 극작만 변하지 않게 유지하게 연결되어야 하므로 마치 결과부에서의 방향(각도)는 동일하게 이루어지도록 하였다. P1과 P7은 입구와 출구의 영역으로 조정이 필요 없으며, 아울러 P2와 P6도 입구와 출구영역으로 조정이 필요 없다. P3과 P5에서는 y 방향으로의 변경은 가능도록 하여 벽면의 조정을 할 수 있도록 하였으며, 연결이 유연하게 이루어지도록 각도의 조정이 가능하도록 하였다. P4의 경우는 벽면의 조정에서 y 방향으로의 최고점의 위치를 조정하도록 한 것이므로 x와 y 방향으로의 조정이 가능하도록 하였으나 각도는 최고점의 위치이므로 각도의 조정은 필요가 없게 된다. 따라서 Table 1과 같이 윗면과 아랫면의 조정을 위한 설계변수는 각각 6개에서 12개가 선정되었다.

앞서 언급된 방식으로 Fig. 2에서 보여주는 유선과 동일한 형상을 얻기 위한 제어점을 얻었을
Table 1. 12 design variables to modify the upper and lower wall

| Design variables |
|------------------|--|
| y at control point S3 (SY3) |
| angle at control point S3 (θsa) |
| x at control point S4 (SX4) |
| y at control point S4 (SY4) |
| y at control point S5 (SY5) |
| angle at control point S5 (θsa) |
| y at control point P3 (PY3) |
| angle at control point P3 (θpa) |
| x at control point P4 (PX4) |
| y at control point P4 (PY4) |
| y at control point P5 (PY5) |
| angle at control point P5 (θpa) |

Table 2. Control points values on the upper and lower wall

<table>
<thead>
<tr>
<th>Control points</th>
<th>x location (x/c)</th>
<th>y location (y/c)</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>(-1.039)</td>
<td>(0.509)</td>
<td>-</td>
</tr>
<tr>
<td>S2</td>
<td>(-0.216)</td>
<td>(0.986)</td>
<td>(29.66)</td>
</tr>
<tr>
<td>S3</td>
<td>(0.055)</td>
<td>1.108</td>
<td>14.98</td>
</tr>
<tr>
<td>S4</td>
<td>0.202</td>
<td>1.128</td>
<td>(0.0)</td>
</tr>
<tr>
<td>S5</td>
<td>(0.712)</td>
<td>0.802</td>
<td>-54.99</td>
</tr>
<tr>
<td>S6</td>
<td>(0.915)</td>
<td>(0.417)</td>
<td>(-67.57)</td>
</tr>
<tr>
<td>S7</td>
<td>(1.570)</td>
<td>(-1.146)</td>
<td>-</td>
</tr>
<tr>
<td>P1</td>
<td>(-1.039)</td>
<td>(-0.911)</td>
<td>-</td>
</tr>
<tr>
<td>P2</td>
<td>(-0.216)</td>
<td>(-0.434)</td>
<td>(29.66)</td>
</tr>
<tr>
<td>P3</td>
<td>(0.036)</td>
<td>-0.317</td>
<td>9.27</td>
</tr>
<tr>
<td>P4</td>
<td>0.202</td>
<td>-0.292</td>
<td>(0.0)</td>
</tr>
<tr>
<td>P5</td>
<td>(0.693)</td>
<td>-0.592</td>
<td>-53.81</td>
</tr>
<tr>
<td>P6</td>
<td>(0.915)</td>
<td>(-1.003)</td>
<td>(67.57)</td>
</tr>
<tr>
<td>P7</td>
<td>(1.570)</td>
<td>(-2.566)</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3. Constraints of design variables

<table>
<thead>
<tr>
<th>Design variables</th>
<th>Lower bounds</th>
<th>Upper bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY3</td>
<td>SY2</td>
<td>SY4</td>
</tr>
<tr>
<td>SY5</td>
<td>SY6</td>
<td>SY4</td>
</tr>
<tr>
<td>SX4</td>
<td>SX3</td>
<td>SX5</td>
</tr>
<tr>
<td>SY3, SY4, SY5</td>
<td>S_{succ}</td>
<td>-</td>
</tr>
<tr>
<td>θsa</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>θsa</td>
<td>-80</td>
<td>0</td>
</tr>
<tr>
<td>PY3</td>
<td>PY2</td>
<td>PY4</td>
</tr>
<tr>
<td>PY5</td>
<td>PY6</td>
<td>PY4</td>
</tr>
<tr>
<td>PX4</td>
<td>PX3</td>
<td>PX5</td>
</tr>
<tr>
<td>PY3, PY4, PY5</td>
<td>S_{pre}</td>
<td>-</td>
</tr>
<tr>
<td>θpa</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>θpa</td>
<td>-80</td>
<td>0</td>
</tr>
</tbody>
</table>

제일 작은 값은 Table 2에서 보여주고 있다. Table 2에서 각 위치 내의 값은 제어점으로 얻어진 값이나 최적화과정에서는 변경되어지지 않는 고정된 값 을 의미한다.

III. 최적화 및 유효한 결과에 관한

3.1 목적함수 및 제약조건

본 연구에서는 주기조건의 경계영역에 벽면을 설치하여 얻어지는 결과가 주기조건을 사용하여 얻어졌던 캐스케이드 블레이드 표면에서의 마하 수와 동일한 결과를 얻고자 하는 것이 목적이므로, 두 결과의 차이가 최소가 되도록 하여야 한다. 하지만 벽면의 설치로 아래에 있는 블레이드는 압력면이 벽면에 영향을 받으므로 흡입면에서 얻어지는 마하수를 적용하고, 위쪽에 있는 블레이드는 벽면으로부터 흡입면 영향을 받으므로 압력면에서의 마하수를 적용한다.

Minimize : obj = H(x, X) at S_{succ} and S_{pre} (1)

식(1)에서의 X와 H는 설정변수와 목적함수를 의미하며, S_{succ}와 S_{pre}은 각각 아래에 설치된 블레이드의 흡입면과 위에 설치된 블레이드의 압력 면을 의미한다. H는 목적함수로써 주기조건에서 얻어진 표면마하수와 벽면조건에서 얻어진 표면 마하수의 차이를 의미한다.

제약조건으로는 제어점이 원래의 조건에 따라 y 방향으로의 최고점이 Pt4 이므로 Pt3은 Pt2와 Pt4의 중간에 위치하도록 제한하고, Pt5는 Pt4와 Pt6의 중간에 위치하도록 하였다. 특히 y 방향으로의 변화에 있어서 위쪽에 설치되는 벽면의 제어점은 위쪽에 있는 블레이드의 흡입면이하로 내려오는 경우가 없도록 하였으며, 마찬가지로 아래쪽의 벽면을 제어하는 제어점은 아래쪽에 있는 블레이드의 압력면 위로 변형되지 않도록 하여 캐스케이드 설계가 가능하도록 하였다. Table 3은 각각의 제한조건을 보여주고 있다.

3.2 최적화 결과에 관한

최적화는 주어진 제약조건을 위배하지 않으며 목적함수와 최적화(최대화, 최소화, target함)하는 설정변수(X)를 찾는 과정이다. 최적화 알고리즘이
의 기본개념은 초기의 설계변수값에서 주어진 제약조건을 만족하며 목적함수가 최적화되도록 하는 설계변수의 값을 찾는 것이다. 일반적으로 많은 설계변수를 가진 경우에는 기울기 기반의 최적화법을 적용하는 것이 효과적이지만 목적함수가 설계변수의 전역에 대하여 최적성을 보장하지 못하는 경우에는 반응변수이 유리하다.

본 연구에서 12개의 설계변수가 선정되었으며 이들을 기준으로 반응변수를 적용하게 되면 해석하여야 할 개수의 급격한 증가로 인하여 갑바 샌 해석방법이 될 뿐 아니라, 차원의 증가에 따른 모델의 정확성 감소가 발생되므로 본 연구에서는 최적화 계산차원의 감소를 위하여 기울기 기반의 최적화를 수행하였다. 본 연구에서는 최적화를 위하여 Vanderplaats에 의하여 개발된 VisualDOC[16]의 MMFD (modified method of feasible directions)를 최적화 알고리즘으로 채택하였으며 방향탐색을 위한 설계변수의 상대적인 변화의 크기와 절대적인 변화의 크기는 각각 5%와 0.5%를 사용하였다.

3.3 수치해석방법

계산을 위하여 15만개 이상의 격자가 사용되었으며 최적화에 사용되었으며, 벡터면에서의 첫 번째 y*는 1 이하의 값을 갖도록 하였다. 입구와 출구의 영역은 블레이드의 코드를 기준으로 1.2배와 2.0배 만큼 전단과 후단을 기준으로 상류와 하류에 설치하였다.

IV. 계산 및 결과

4.1 VKI 실험결과와 비교

Fig. 3은 실험조건과 동일한 주기조건이 사용되어진 경우에 얻어진 계산결과와 실험결과의 비교로서 실험은 4개의 각각 다른 결과를 나타내며, 계산의 결과는 선으로 표시되어 있다. Fig. 3의 캐스케이드 계산 영역에서 위쪽 블레이드에서 얻어진 결과와 아래쪽에서 얻어진 결과, 그리고 두 익행에서 중간에서도 얻어진 결과들이 동시에 나타나 있으나 주기조건의 계산이므로 어느 블레이드에서의 결과나 모두 동일한 결과를 나타내고 있음을 알 수 있다. Fig. 3에서 보여주는 블레이드 표면에서의 마하수는 블레이드 표면에서 측정된 정압력과 입구에서의 측정된 전압력을 기준으로 얻어진 결과이다.

4.2 목적함수 평가방법

식(1)에서 H^{*}는 목적함수로써 벡터를 설치하여 얻어지는 블레이드 표면에서의 마하수와 주기조건을 사용하여 얻어지는 블레이드 표면에서의 마하수와 차이로 정의되었지만, 이를 평가하기 위한 영역에 따라서 목적함수의 값은 달라질 수 있다. 우선 Fig. 3에서 보여주는 결과에서, 후단에 있는 각자와 정계면의 영향으로 수치적인 피크가 발생되므로 이를 평가하기 위하여 목적함수를 식(2)와 같이 평가하였다[14].

$$H^{*} = |\int_{0}^{0.96} M_{ac} \cdot dS_{ac} - \int_{0}^{0.96} M_{pred} \cdot dS_{ac}| + |\int_{0}^{0.96} M_{pre} \cdot dS_{pre} - \int_{0}^{0.96} M_{pred} \cdot dS_{pre}|$$

식(2)에서 M_{ac}과 M_{pred}은 벡터면으로 얻어진 블레이드 홀입면과 압력면에서의 마하수를 의미하며, M_{pred}는 주기조건으로 얻어진 표면 마하수를 의미한다. 상기의 방식으로 목적함수를 구하여 최적화하는 과정을 Fig. 4에서 보여주고 있다.

Fig. 4에서 아래 측에 있는 블레이드의 홀입면 (S_{nc})을 따라서 얻어진 표면마하수와 주기조건에서 얻어진 표면마하수와의 차이의 절대값은 사각
행기호로 나타나 있으며, 반면에 위 측에 위치한 블레이드의 압력면(\$S_{pm}\$)에서 얻어진 표면마하수와 주기조건에서 얻어진 표면마하수와의 차이의 절대값을 역삼각형으로 나타내고 있다. 이 두 값의 합을 목적함수로 하여 최적화를 수행하였을 때의 진행과정을 보여주고 있으며, 7번의 탐색과정을 수행하였음을 알 수 있다. 첫 번째 방향 탐색을 마친 후의 흡입면과 압력면에서의 목적함수의 값은 2.6624와 0.4325을 나타내었으며, 반면에 7번의 방향탐색을 마친 최적화된 결과에서의 흡입면과 압력면에서의 목적함수의 값은 0.9463와 1.1460을 나타내었다. 목적함수의 최소화를 위하여 탐색과정을 포함한 계산은 109번 반복 수행되었으며, 탐색과정을 포함한 전 과정에서의 목적함수 변화를 Fig. 5에 보여주고 있다.

최적화의 과정을 보여주는 Fig. 4-5에서 초기 과정에서는 압력면에서 얻어진 목적함수보다는 출력면에서 얻어진 목적함수가 크게 나타났으나 탐색과정을 수행한 후 최적화가 진행되면서 압력면에서의 목적함수가 흡입면에서의 목적함수보다 조금 더 크게 나타나고 있음을 보여주고 있다. 하지만 최적화된 결과로서 표면마하수의 비교 결과를 보여주는 Fig. 6(a)에서는 흡입면에서의 불일치가 압력면에서의 불일치에 비하여 크게 나타나고 있음을 보여준다. 아울러 Fig. 4의 1번의 방향 탐색과정을 마친 후의 결과를 나타내는 Fig. 6(b)와의 비교에서도 흡입면에서의 표면마하수는 최적화가 된 경우가 주기조건으로 얻어진 결과와
Fig. 7. Comparison of objective function along the pressure surface obtained after 1st and 7th directional search for the optimization

보다 일치하고 있음을 보여주지만, 압력면에서의 표면마하수의 비교에서는 목적이수의 차이만큼의 최적화된 경우가 첫 번째 방향탐색을 마친 경우보다 나빠진 것처럼 보여지는 않는다.

표면마하수의 결과와 목적이수 값 간의 차이는 전단을 지난 직후 압력면에서 정해진의 존재로 인한 급격한 마하수의 변화로 기인하였다. Fig. 7은 압력면을 따라서 얻어진 목적이수의 값은 나타낸 것으로 마하수의 급격한 변화로 인하여 평가를 위한 방향에 따라서 파장이 크게 나타난 결과임을 알 수 있다. 이러한 결과를 Fig. 7의 내부에 있는 압력면을 따라 얻어진 0-0.2의 영역에서 보다 명확히 보여주고 있다. 아울러 축구부분에서 형성되는 파크도 블레이드의 전단에서 형성지는 격차와 정해진의 영향으로 발생되는 것이므로, 이 부분에서 목적이수의 평가에 파장이 크게 영향을 미치게 되면 최적화를 수행하는 과정에서 정확한 방향으로 접근할 하지 못하게 된다.

4.3 목적이수 평가방법

목적이수의 결과가 나타나지 않도록 평가영역을 조정하고, 물리적으로 실현 부분에는 가중치를 주어서 목적이수의 영향이 효과적으로 반영되도록 홀입면에서의 목적이수는 1.5배의 가중치를 주었다. 목적이수의 평가에서는 압력면에서 전단부분에서의 정해진 영역을 재화하기 위하여 0.1-0.95로 설정하였다. 또한 홀입면의 경우에 두 단으로 가면서 격차와 정해점의 영향으로 목적이수에 파크가 발생되어점은 Fig. 8에서 보여주고 있으며, 이 부분에서 급격한 마하수의 변화로 인한 목적이수가 파장되게 나타날 수 있다. 따라서 이 영역을 제외하고 목적이수의 값은 구하기 위하여 홀입면의 영역을 0.95까지 고려하여 목적이수를 구한다.

\[
H^* = \omega_1 \int_{0}^{0.95} M_{\text{pred}} ds_{\text{HSC}} - \int_{0}^{0.95} M_{\text{pred}} ds_{\text{HSC}} + \omega_2 \int_{0}^{0.5} M_{\text{pred}} ds_{\text{pre}} - \int_{0.1}^{0.5} M_{\text{pred}} ds_{\text{pre}}
\]

Fig. 8. Comparison of objective function along the suction surface obtained after 1st and 7th directional search for the optimization

Fig. 9. Comparison of objective function when the range of the suction and pressure surface is adjusted
식(3)에서 기울치로 적용되는 ω_1과 ω_2는 각각 1.5와 1.0이 적용되었다. 식(3)의 방법으로 Fig. 4의 목적함수 값의 변화를 확인하여 보였으며, 1번의 방향 탐색과정 후에 얻어진 결과와 7번의 방향 탐색과정 후에 얻어진 결과에서 알림변을 따라서 얻어진 목적함수의 값이 점점 변하며 목적함수에 비하여 상당히 줄어들게 됐을 Fig. 9에서 보여주고 있다. 따라서 이러한 방법으로 목적함수를 평가하는 것이 표면마하수의 비교 결과들과 일치되는 현상을 나타내게 된다. 아울러 Fig. 9의 결과는 앞서 얻어진 결과를 기준으로 참고로 비교한 것이며, 상기의 방식으로 최적화를 수행하게 되면 방향 탐색과정에서 목적함수의 값이 다르게 되어 방향 탐색과정을 통하여 다른 설계변수를 찾게 되어 최적화되는 과정은 전혀 다른 결과를 얻게 된다.

식(3)의 방법으로 목적함수를 평가하고, 이 목적함수가 최소화가 되었을 때의 블레이드 표면마하수의 비교를 Fig. 10에서 보여주고 있다. 식(2)의 목적함수 평가방법으로 얻어진 결과는 Fig. 6(a)의 결과보다는 보다 일정한 결과를 보여주고 있으며 흡입면에서의 표면 마하수가 보다 잘 일치하고 있음을 보여주고 있다. Table 4는 최적화되었을 때의 설계변수의 값을 나타내고 있다.

Fig. 11은 목적함수가 최적화 과정에서 변화되는 과정을 보여주고 있으며 최적화되었을 때의 값은 0.8492를 나타내었다. 동일한 목적함수 평가방식으로 Fig. 6(a)를 평가하였을 때 Fig. 6(a)의 결과에서는 1.0164의 값을 나타내었으므로 보다 양호한 최적화가 이루어졌음을 알 수 있으며, 최적화과정에서 목적함수의 평가를 실제현상과 일치하도록 평가하는 것이 중요한다는 것을 알 수 있다. 따라서 알림변에서의 효과가 축소되고 흡입면에서의 영향이 크게 나타남으로 치수가 많이 발생되는 부분에서 보다 더 근접한 결과를 얻게 되었음을 알 수 있다. 최적화의 계산에서 방향 탐색과정을 포함하여 수행된 계산은 110번이 수행되었다.

Fig. 12는 캐스케이드 블레이드 사이의 영역에서 얻어진 유동장의 변화를 보여주고 있으며 주기조건으로 얻어진 Fig 12(a)의 마하수 유동장과 벽면조건으로 얻어진 Fig. 12(b)와 (c)의 마하수 유동장과의 차이를 보여주고 있다. 목적함수를 평가하는 방식에 따라서 차이가 발생됨을 보여주고 있으며, 식(3)의 방식으로 목적함수를 평가하였을 때가 주기조건으로 얻어진 마하수의 분포와 보다 일치되는 것을 확인할 수 있으며 특히 후단으로 접근하면서 흡입면 근처에서 보다 일치되는 결과를 나타내고 있음을 알 수 있다. 이러한 내부유동장의 일치가 Fig. 10에서의 블레이드 표면 마하수가 Fig. 6(a)의 표면마하수보다 잘 일치하는 결과를 얻게 되었음을 알 수 있다.

Table 4. Design variables when the sidewalls are optimized

<table>
<thead>
<tr>
<th>Variables</th>
<th>x location (x/c)</th>
<th>y location (y/c)</th>
<th>angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>-</td>
<td>1.108</td>
<td>14.997</td>
</tr>
<tr>
<td>S4</td>
<td>0.201</td>
<td>1.127</td>
<td>-</td>
</tr>
<tr>
<td>S5</td>
<td>-</td>
<td>0.799</td>
<td>-54.601</td>
</tr>
<tr>
<td>P3</td>
<td>-</td>
<td>-0.318</td>
<td>19.295</td>
</tr>
<tr>
<td>P4</td>
<td>0.202</td>
<td>-0.292</td>
<td>-</td>
</tr>
<tr>
<td>P5</td>
<td>-</td>
<td>-0.568</td>
<td>-53.799</td>
</tr>
</tbody>
</table>

Fig. 10. Comparison of surface Mach number obtained with the optimized wall boundary

Fig. 11. Convergence history of the objective function obtained with adjusted range
비의 유로 캐스케이드 실험을 위한 벽면 최적화에 관한 연구

지난 연구는 본 연구는 교육과학기술부의 21세기 프로젝트 연구개발사업인 이산화탄소 저감 및 처리 기술개발 사업단의 연구비 지원 (CH3-101-04)으로 수행되었습니다.

참고문헌

