A Study on the measurement for Vortex trajectory over an UCAV using image processing methods

Jihun Ko*

ABSTRACT

Image data produced from ADD water-tunnel test are currently analyzed manually. The accuracy and elapsed time of this process can be determined by observers. In this paper, the algorithm based on MATLAB for improved image data processing and analysis is proposed. This algorithm consists of camera calibration, gray-level transformation, noise filtering and binarization in image preprocessing, vortex trajectory measurement in image analysis. Experimental results show that the proposed algorithm has better accuracy and execution speed than those of the existing methods.

초 록

현재 국방과학연구소 수동 시험에서 생성된 영상데이터는 수작업에 의해 분석되어지고 있다. 이러한 방법은 관측자에 따라 정확성과 분석소요시간이 상이할 수 있다. 본 논문에서 제시된 영상데이터 처리와 분석을 위해 MATLAB을 기반으로 한 알고리즘을 제안하였다. 이 알고리즘은 해석 보정, 그레이레벨 변환, 노이즈 제거, 이진화를 하는 영상 전처리 과정, 와류 궤적을 계측하는 영상 분석 과정으로 구성되어 있다. 수동 시험에서 획득된 영상데이터를 이용하여 테스트 한 결과 제안된 알고리즘은 기존 영상데이터 분석 방법에 비해 정확성과 실행속도가 향상되었다.

Key Words : Water Tunnel(수동), Trajectory(궤적), Image Processing(영상처리)
그림 1. 영상데이터 처리 과정

로써 수동 영상데이터 분석 방법을 개선하는데 목적을 두고 있다. 그림 1은 본 연구에서 실시한 영상데이터 처리 과정을 블록 다이어그램으로 나타낸 것이다.

즉, 디지털 카메라에 의해 획득된 영상데이터를 웨크 보정, 그레이 헤벨 변환, 노이즈 제거, 이진화 등의 방법으로 영상처리를 한 후 무인선투기 와류 궤적을 정량적으로 계측하였다.

II. 수동 시험

본 시험에 사용된 수행은 수평 운용 방식으로 시험부의 크기는 폭 61.0cm, 높이 91.4cm 그리고 길이는 188.0cm이다. 수행은 시험부 정상(top)에서 5.1cm 아래에 위치한다. 시험부 옆면은 경계 줄 벽체 두께를 고려하여 약 0.2" 확장되어 있다. 최고 속도는 30.5cm/sec 이다. 유월은 난류도 1.0% 이내, 속도 공급도 ±2.0% 이내, 평균 흐름 각은 피치(pitch) 및 요(yaw) 방향으로 ±1.0° 이내이다. 수속 비는 6.1이고 7.5Hp 380V 3상 백프에 의해 구동된다. 모형의 자세는 정직 및 동직 거동이 가능한 모형지지부로 유지시키며, 본 설비는 NI(National Instuments)의 하드웨어 모듈과 LabVIEW기반으로 자체 개발된 시험 자동화 소프트웨어에 의해 구동된다[2].

수동 시험 모형의 제원은 기준 면적 390.2cm², 날개 폭 40.4cm, 평균시각 13.2cm, 전장 길이 33.0cm이다. 모형의 후방부는 모형 지지대를 위해 스티링(sting)을 삽입할 수 있도록 수정되었다. 양의 발음각에서 동체 및 날개 옆면에서의 가시화 결과 판찰하기 위해 물감 구명은 동체 및 날개 junction 부분에 설치하였다. 구명은 내경 1.1 mm인 스테인리스 튜브(stainless tube)를 삽각형 모양의 전방동체(foresbody)에 좌우 3개씩, 주 동체(main body) 좌우 3개씩 그리고 날개 junction부에 각 1개씩 총 14개 설치하였다. 모형의 표면은 물감이 명확히 가시화 될 수 있도록 화색 빈테트를 사용하여 도색하였다[2].

수동 시험은 압축 공기를 이용하여 물감을 모형 표면으로 분출시키는 방법을 사용하였다. 시험이 몇 미끄럼 각각 0°인 상태에서 일정한 반을 설정하여 시험을 수행하였으며, 자유류(freestream) 속도는 12.7cm/sec 이다. 이 때 평균 시위 기준 레이놀즈 수는 1.4x10^5 이기 때문에 미도류 저장 결과는 Nikkon D-200 니콘 캐리카를 사용하여 활용하였으며, 사진 조명은 500W 청색 포트로프 2개를 사용하였다. 모형의 상단을 환경할 때 디지털카메라는 수조의 하단으로부터 1m 이격하여 설치하였고, 포트로프는 수조의 측면 좌우로부터 50cm 이격하여 설치하였다. 또한 모형의 측면을 환경할 때 디지털카메라는 수조의 측면으로부터 70cm 이격하여 설치하였고, 포트로프는 수조의 상, 하단으로부터 50cm 이격하여 설치하였다.

III. 영상 처리 기법

3.1 영상 교정 기법

영상 f 상의 좌표(x, y)에 있는 화소를 영상 g의 새로운 위치 (x', y')으로 이동했다고 가정
하자. 이 변환은 다음처럼 표현할 수 있다.

\[
\begin{align*}
 x' &= T_x(x, y) \\
 y' &= T_y(x, y)
\end{align*}
\]

\(T_x(x, y)\)와 \(T_y(x, y)\)는 기하학적으로 왜곡된 영상 \(g(x', y')\)을 만드는 공간 변환 함수이다. 일반적으로 \(T_x(x, y)\)와 \(T_y(x, y)\)를 \(x\)와 \(y\)의 다항식으로 표현한다. 가장 간단한 형태는 \(x\)와 \(y\)에 선형인 경우이며, 이 경우를 affine 변환[3]이라 한다.

\[
\begin{align*}
 x' &= a_0 x + a_1 y + a_2 \\
 y' &= b_0 x + b_1 y + b_2
\end{align*}
\]

식 (1)을 행렬식으로 나타내면

\[
\begin{align*}
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} &= \begin{bmatrix}
 a_0 & a_1 \\
 b_0 & b_1
 \end{bmatrix} \begin{bmatrix}
 x \\
 y
 \end{bmatrix} + \begin{bmatrix}
 a_2 \\
 b_2
 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} &= \begin{bmatrix}
 a_0 & a_1 & a_2 \\
 b_0 & b_1 & b_2
 \end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}
\end{align*}
\]

영상처리에서 이동, 회전, 확대축소 등은 모두 affine 변환에 해당한다.

\[
\begin{align*}
 \begin{bmatrix}
 1 & 0 & \Delta x \\
 0 & 1 & \Delta y \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 S_x & 0 & 0 \\
 0 & S_y & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y \\
 1
 \end{bmatrix}
 < \text{이동} > < \text{회전} > < \text{확대축소} >
\end{align*}
\]

본 연구에서는 영상 교정 데이터를 획득하기 위해 affine 변환을 적용하였다.

3.2 영상 개선 기법

히스토그램(Histogram)은 화소의 명암값을 막대그래프로 표현한 것으로 각 화소가 갖는 명암 값은 \(x\)축, 각 명암값이 가진 빈도수는 \(y\)축에 표현하여 명암대비 및 명암각 분포 등의 영상정보를 보여주는 도구로 이용된다. 그림 4는 각 화소가 갖는 명암값 분포를 히스토그램으로 나타낸 것이다.

영상의 밝기에 따라 어두운 영상은 화소값 분포가 원족으로 퍼져 있는 히스토그램을, 밝은 영상은 화소값 분포가 오른쪽으로 퍼져 있는 히스토그램을 갖게 된다. 이와 같이 영상의 명암값 분포가 균일하지 못할 경우 Histogram Equalization[4]를 적용하게 되면 명암값이 균일한 분포로 재분배되어 영상데이터의 contrast가 개선된다. 또한 이 기법은 포인트 처리기이기 때문에 기존 명암값은

그림 4. 영상의 히스토그램

새로운 값으로 설정된다.

Histogram Equalization은 다음과 같은 3단계로 이루어진다.

1. 히스토그램을 생성한다.

\[
p(r_k) = \frac{n_k}{n}, \quad k = 0, 1, \ldots, 255
\]

여기서, \(r_k\)는 \(k\) 번째 그레이레벨, \(n_k\)는 영상 내에서 \(r_k\) 값을 갖는 화소 수, \(n\)은 영상의 전체 화소 수이다.

2. 히스토그램의 정규화된 값을 계산한다.

\[
s_k = T(r_k) = \sum_{j=0}^{k} P_r(r_j) = \sum_{j=0}^{k} \frac{n_j}{n}
\]

3. 입력영상에서 \(r_k\) 레벨을 갖는 각 화소를 \(s_k\) 레벨을 갖는 화소로 대체하여 출력 영상의 생성한다.

본 연구에서는 영상 개선 데이터를 획득하기 위해 Histogram Equalization과 노이즈 제거 (noise filtering) 기법을 적용하였다.

3.3 영상 이진화 기법

영상의 이진화는 컬러(color) 또는 그레이(gray) 데이터에 임계값(threshold)을 적용하여 각 화소(pixel)값을 흑(0) 또는 백(1)으로 나타내므로 영상데이터의 정보를 최소화시키며 분석하는데 주로 이용되고 있다.

\[
\max \sigma_s^2 = w_0(\mu_0 - \mu_T)^2 + w_1(\mu_1 - \mu_T)^2
\]

여기서, \(w_0\)는 Class 0에 해당하는 확률 수 /
전체 픽셀 수, \(w_1 \)는 Class 1에 해당하는 픽셀 수 / 전체 픽셀 수, \(w_0 \)는 Class 0의 평균 영상값, \(\mu_1 \)는 Class 1의 평균 영상값, \(\mu_2 \)는 전체 평균 영상값이다.

이와 같은 방법에 의해 설정된 임계값을 이용하여 입력 영상의 각 화소의 영상값이 임계값 이 상이 되면 대응하는 출력 영상의 화소값은 1로, 그 이외의 경우에는 0으로 설정하는 방법을 임계값 처리(Thresholding)라고 한다.

임계값 처리를 식으로 나타내면 다음과 같다.

\[
g(x, y) = \begin{cases}
1 & \text{if } f(x, y) \geq T \\
0 & \text{if } f(x, y) < T
\end{cases}
\]

여기서 \(f(x, y) \), \(g(x, y) \)는 영상처리 전의, 후의 \((x, y) \)에 대한 화소값이며, \(T \)는 임계값이다.

임계값 처리 기법은 이진화를 적용하는 영역에 따라 전역 임계값 처리(Global Thresholding)와 지역 임계값 처리(Local Thresholding)로 분류할 수 있다. 전자는 영상데이터의 전 영역에 1개의 임계값을 설정한 후 이진화하는 방법이다. 후자는 영상데이터 내 특정 영역의 밝기가 일정하지 않을 경우 사용하는 방법으로 영상데이터에 사용자가 원하는 영역을 설정한 다음 그 영역에 대한 지역 임계값으로 이진화하는 방법이다. 본 연구에서는 영상 이진 데이터를 획득하기 위해 임계값 처리 기법을 적용하였다.

IV. 영상분석 결과검토

기존 영상분석법은 수작업에 의한 방법으로 이미지 통을 이용하여 모형 영상에 격자(grid) 영상을 오버랩(overlap)하여 외류 측정을 계측하였고, 여기서 격자의 기본 크기는 30mm \(\times \) 30mm이다. 계측 두구는 최소눈금이 1mm 인 일반 자를 사용하고 있다. 그러나 이러한 수작업에 의한 분석 결과는 관측자에 따라 정확성과 분석소요시간이 상이할 수 있다.

본 연구에서는 그림 5와 7에서 보는 바와 같이 모형 영상의 원본 데이터에 앞서 소개한 영상처리 기법을 적용하여 이진 영상 데이터로 변환한 다음 와류가 존재하는 영역에 대해 무인전투기 모형의 nose 부분을 원점으로 수평, 수직검색(scanning)을 실시하여 모형의 물감 배출구에서부터 와류가 쏟되는 지점 전단까지의 와류 퀘직을 계측하였다. 이에 기존 분석 방법보다 계측 오차를 감소시키기 위해 와류 퀘직을 계측하는 최소단위로 화소(pixel)를 이용하였다. 여기서, 단위 화소(unit pixel)의 크기는 모형 상단 활영시 0.1mm이고 축면 활영시 0.3mm이다. 또한 디지털 카메라 활영 시 수조 내부의 구조로 인해 발생된 영상의 오용을 교정하기 위해 그림 2처럼 수조 허브에 격자를 장착하고 모형을 제거한 상태에서 격자만을 활영하여 격자의 외곽도를 계산한 다음 그 값을 획득된 모형 영상 원본 데이터에 적용하여 영상 교정 데이터를 획득하였다.

다음은 무인전투기 모형의 상단을 촬영한 영상의 와류를 계측한 결과이다.

![그림 5. 주 동체 와류 상단 영상처리](image-url)
그림 5 a)는 수조의 하단에 디지털 카메라를 위치시켜 놓고 촬영한 주 동체 외류 상단 영상의 원본데이터이다. 그림 5 b)는 원본데이터에서 모형의 영역을 설정한 다음 격자 격자 왜곡도를 이용하여 영상의 왜곡을 교정한 후 green 계열을 기 준으로 하여 절리를(color) 영상을 그레이 레벨(Gray-level) 영상으로 변환한 데이터이다. 그림 5 c)는 외류 영역을 강조하기 위해 영상데이터의 영역을 제한정한 다음 Histogram Equalization과 노이즈 제거(noise filtering)를 적용한 데이터이다. 그림 5 d)는 그레이 레벨 데이터에 임계값 처리 기법을 적용하여 획득된 이진(binary) 데이터이다.

그림 6 a)는 모형의 nose 부분을 원점으로 하여 화소 단위로 외류 측정을 나타낸 결과이다. 측정 결과를 이용하기 위해서는 이것에 대한 단위 환산이 필요하다. 이 때 단위화소(unit pixel)의 크기는 다음과 같은 방법에 의해 정해진다.

\[
U_P = \frac{F_L}{P_T}
\]

(10)

여기서, \(U_P\) 는 단위픽셀의 크기, \(F_L\) 는 날개 폭 길이, \(P_T\)는 날개 폭 화소 수이다. 날개 폭 화소 수를 계측하기 위해 수평 검색을 실시하였다. 식 (10)에 의해 그림 5에서 단위 화소 크기는 0.1mm이다. 그림 6 b)는 외류 계측을 mm 단위로 환산한 결과이다.

외류의 이동거리는 다음과 같은 방법에 의해 제정한다.

\[
D = \sum \sqrt{(x[i+1]-x[i])^2+(y[i+1]-y[i])^2}
\]

(11)

여기서, \(U_P\)는 단위픽셀의 크기, \(P_r\)는 화소의 row 방향 좌표, \(P_c\)는 화소의 column 방향 좌표이다.

외류의 이동속도는 수동시험 시 유속과 같으므로 12.7cm/sec이다. 식 (11)에 의해 그림 5에서 계측된 외류 이동거리는 182.8mm이며, 이 때 이동소요시간은 약 14초이다. 만약 날개 junction 부분의 외류 상단의 폭을 계측한다면 시작점을 날개 junction 부분으로 설정한 다음 주 동체 외류 상단의 측정방법과 동일하게 수행하면 된다.

다음은 무인전투기 모형의 측면을 촬영한 영상의 외류를 계측한 결과이다.
그림 7 a)는 수조의 측면에 디지털 카메라를 위치시켜 놓고 활성한 주 동체 외류 측면 영상의 원본데이터이다. 그림 7 b)는 원본데이터에서 모형의 영역을 설정한 다음 green 계열을 기준으로 하여 췄러(color) 영상을 그레이 헤벨(gray-level) 영상으로 변환한 데이터이다. 그림 7 c)는 격자의 외곽도를 이용하여 영상의 해석을 교정한 다음 Histogram Equalization과 노이즈 제거(noise filtering)를 적용한 데이터이다. 그림 7 d)는 그레이 헤벨 데이터에 임계값 처리 기법을 적용하여 확득한 이진(binary) 데이터이다.

그림 8 a)는 모형의 nose 부분을 원점으로 하여 좌표 단위로 외류 측정 결과를 나타낸 결과이다. 이때 단위 화소 크기는 식 (10)에 의해 0.3mm이다. 그림 8 b)는 외류 측정을 mm 단위로 환산한 결과값. 왼쪽의 이동속도는 수동시험 시 유속값으로 12.7cm/sec이다. 이때 왼쪽의 이동 거리는 식 (11)에 의해 226.1mm이며, 이동소요시간은 약 1.8초이다. 만약 날개 junction 부분의 왼쪽 측면의 균등을 측정한다면 시작점은 날개 junction 부분으로 설정한 다음 주 동체 왼쪽 측면의 측정방법과 동일하게 수행하면 된다.

V. 결 론

수동 시험에서 생성된 영상데이터에 대한 기준 영상 분석은 수작업에 의한 정성적 방법으로 관측자에 따라 결과의 정확성과 분석소요시간이 달라질 수 있다. 그러므로 본 연구에서는 기준 영상데이터 분석 방법을 개선하기 위해 MATLAB 기반의 영상처리 알고리즘을 작성하여 수동 영상데이터의 정량적인 측정을 가능하게 하였다. 그 결과 무인 전투기의 왼쪽 측정은 확고 단위로 측정하여 결과를 이용한 기준 분석 방법보다 정확성이 향상되었고, 영상데이터의 분석 시간도 cpu time을 이용하여 측정한 결과 1회 시험 영상데이터에 대해 기준에 수 시간 단위정도 소요되었던 것이 평균 10초 이내로 단축되었 다.

참고문헌