기술 력

지구 저궤도 위성의 영상임무 자세에 따른 열적 영향 고찰
김희경*, 이장준*, 현범석*

Investigation on Thermal Effect for a Low Earth Orbit Satellite during Imaging Maneuvering
Hui-Kyung Kim*, Jang-Joon Lee* and Bum-Seok Hyun*

ABSTRACT

A low earth orbit satellite with a fixed solar array always has a sun-pointing attitude during daylight, and changes into a nadir-pointing attitude for a imaging mission. Since external heating sources to the satellite panels are Earth irradiation and Albedo during most of daylight in a sun-pointing attitude, the thermal environment condition is relatively stable. However, direct sunlight which is the greatest environmental heating has an affect on the satellite panels during a mission period (10% of one orbit) in a nadir-pointing attitude. In satellite thermal design, thermal effects of a nadir-pointing mission attitude due to this thermal environment change need to be evaluated although the duration of a nadir-pointing attitude is short. Therefore, a nadir-pointing attitude during a mission is incorporated into thermal model and by the thermal analysis result, thermal effects on the satellite are investigated.

초 록

본 논문에서 고려된 저궤도 위성은 고정형 태양 전지판을 가지기 때문에 낮기간(daylight) 동안에 태양전지판이 태양지향(sun-pointing) 자세를 유지하고, 관측 임무 수행을 위해 태양 전지판 방향과 반대방향에 위치한 탐체제가 지구지향(nadir-pointing)이 되도록 자세를 변경한다. 이 때 낮기간의 대부분을 차지하는 태양지향 자세에서는 위성 패널(panel)로 입사하는 외부 열환경 요인인 지구 복사열과 알bedo(Albedo)이기에 때문에, 비교적 안정적인 열환경 조건을 가지고 있다. 이에 반하여, 관측 임무를 수행하는 케이드 10% 정도의 지구지향 자세에서는 위성의 열환경 조건에 가장 저해적인 영향을 주는 태양광이 위성 패널에 영향을 준다. 비록 위성이 비교적 좁은 시간 동안에 지구 지향의 자세를 유지하지만, 이러한 열환경 조건의 변화 때문에 위성의 열설계에서 지구지향의 임무 자세에 따른 열적 영향에 대한 검토가 필요하다. 본 연구에서는 열해석 모델에 관측 임무 구간 동안의 지구지향 자세를 반영한 열해석 결과를 통하여 그 영향을 알아보았다.

Key Words: Low Earth Orbit Satellite(저궤도 위성), Satellite Thermal Design(위성 열설계), Satellite Thermal Model(위성 열모델), Satellite Thermal Analysis(위성 열해석), Satellite Mission Attitude(위성 임무자세)

† 2008년 6월 19일 접수 ~ 2008년 8월 14일 심사완료
* 정회원, 한국항공우주연구원 위성추진팀
교신저자, E-mail: harry@kari.re.kr
대전 유성구 여운동 과학로 115

1. 서 론

위성 열체어는 운용 궤도상에서 위성에게 부여된 모든 설계 임무 조건 내에서 모든 부품을
히용 한계 온도 내에서 유지하고자 하는데 그 목적이 있다. 이를 위하여 궤도상의 온도 예측을 위한 열해석 모델을 개발하고 열전공/열평형 시험(thermal vacuum/thermal balance test)을 통하여 열모델의 검증 단계를 거친다. 하지만, 수치 적인 열해석이 가지는 불확실성과 실제 우주에서 위성이 경험하게 되는 열환경 조건을 지상에서 동일하게 만들어 시험을 할 수 없는 한계가 있다. 이를 고려하여 위성의 개발단계에서의 열성계를 가능한 최악의 조건 하에서 열적 안전성을 유지할 수 있도록 열체어 방법을 선택하여 적용하게 된다.

본 연구에서는 탐재체를 카메라로 장착하여 관측 임무를 수행하는 저궤도 위성의 열모델을 개발하는 과정에서 고려하게 되는 여러 요소들 중에서 궤도상에서 위성이 임무수행 구간 동안에 취하는 자세를 반영하는 경우의 열적 영향을 열해석을 통하여 알아보고자 한다. 본 연구의 위성이 고정형 태양 전지판을 가지기 때문에 낮구간(daylight)에서는 태양지향(sun-pointing)의 고정된 자세로 궤도상에서 운항하고 임무를 수행하는 구간에는 지구 중심 지향(nadir-pointing) 자세로 운용된다. 이러한 임무 기동 자세를 열모델에 반영한 열해석을 통하여 위성의 열적 영향에 따른 안정성과 위성 열해석에서 임무 기동자세 반영의 필요성에 대하여 검토하였다.

II. 본론

2.1 해석조건과 위성 열모델

열해석을 위하여 적용한 기본 궤도 조건, worst hot 열환경 조건, 위성의 제원은 다음과 같다.

설계궤도조건
고도(Altitude) : 685.13 km (태양동기)
궤도 경사각(Inclination) : 98.13 deg
Local Time Ascending Node (LTAN) : PM 0:30
주기 : 1.64 hr
식기간 : 0.55 hr ~ 1.13 hr

외부 열환경과 열해석 조건 (worst hot 조건)
태양상수(Solar constant) : 1420 W/m²
Albedo : 0.35
지구복사열(Earth IR) : 249 W/m²
EOL (End Of Life)의 광학 물성값
위성 제원
카메라를 탐재체로 하는 관측 임무 수행
임무기간 : 4년
발사 질량 : < 1000 kg

Fig. 1. 위성 기하 열모델

본 연구의 열해석에 사용하는 열모델은 위성의 형상정보를 가지고 있는 기하 열모델 (geometric math model)과 해석의 결과를 얻는 수치 열모델(thermal math model)로 구분되고, 두 열모델은 각각 상용프로그램인 Thermal Desktop의 RadCAD와 SINDA/F를 사용하여 개발되어 해석되었다. Fig. 1은 기하 열모델에서 위성의 외부 영향과 내부 영향을 알 수 있는 그림이다.

2.2 궤도 상의 위성의 기본 자세 정의

본 연구에서의 위성이 궤도에서 가지는 기본 자세 정의는 위성이 임무를 수행하기 위하여 자세를 바꾸어 주는 구간과 임무준비(standby) 상태로서 유지하는 자세로 구분된다. 위성의 임무 준비 자세는 태양광의 영향을 받는 낮구간 (daylight)과 지구 그림자 구간인 식구간(eclipse)으로 구분되어 다른 자세를 가지며 임무수행을 포함하는 궤도 전체에서의 위성 자세 변화가
Fig. 2. 계도 상의 각 위치에서의 위성 자세

Fig. 2에 주어져 있다. 주어진 그림에서 D구간이 식구간, A/B/C구간이 난구간이고, 이 중에서 B 구간이 위성이 임무를 수행하기 위하여 자세를 바꾸어 주는 구간에 해당한다.

태양광을 직접적으로 받는 난구간에서는 고정 향태양 전지판 때문에 태양광자세를 가지고, 임무를 수행하는 D구간은 지구 중 tâm을 항하는 지구지향 자세를 가진다. 식구간인 D구간에서는 지구지향 자세로 탑재체 부분이 지구 중심 방향을 항하도록 하여 지구 북사열의 해택을 받을 수 있도록 정의되어 있다.

2.3 위성 열해석의 지배 방정식과 임무 수행 자세 반영의 의미

계도 열해석에서 위성의 온도는 위성의 내부 발열과 외부 입사 열환경에 대하여 전도 (conduction)와 복사(radiation)의 열전달에 의한 준 열평형(quasi-thermal balance)에 의해 결정된다. 이에 대한 기본적인 온도 지배방정식은 다음과 같다.

\[m \cdot C_p \cdot \frac{\partial T}{\partial t} = G_{\text{conduction}} \cdot \Delta T + G_{\text{radiation}} \cdot \Delta T^4 + Q_{\text{external}} - Q_{\text{internal}} \]

\[m : \text{mass} \]
\[C_p : \text{specific heat} \]
\[G_{\text{conduction}} : \text{conduction conductor} \]
\[G_{\text{radiation}} : \text{radiation conductor} \]
\[Q_{\text{external}} : \text{외부 입사} \]
\[Q_{\text{internal}} : \text{위성 내부 발열} \]

식(1)에서 \(T \)는 기준 노드의 온도, \(\Delta T \)는 인접한 노드와의 온도차, \(\Delta T^4 \)는 기준 노드와 view factor가 존재하는 모든 노드와의 복사열전달량을 위한 온도차이다. 그리고 위성이 외부 열원에 해당하는 \(Q_{\text{external}} \)은 지구 저궤도 위성의 외부 열환경을 포함하는 항이다. 이것은 태양광, 지구 복사열, Albedo로 이루어져 있고, 이 중에서 위성 열체어에 가장 큰 영향을 주는 것이 적절적으로 임사하는 태양광이다. 그리고 계도 열해석에서의 준 열평형은 열원에 해당하는 우주에서의 외부 입사 열환경이 계도상의 위치에 따라 변하고, 위성 내부 발열도 위성의 운행에 따라 전자 부품박스에서의 발열량도 다르기 때문에 계도에서 주기적으로 변하는 온도로 수렴한 상태를 의미한다.

본 연구의 지구 저궤도 위성은 99분의 한 주기에 대하여 임무 수행이 가능한 시간이 최대 10 분으로 제한되어 계도 전체에 대하여 약 10% 정도의 시간 동안에 간격 임무 수행을 위한 지구지향 자세를 취하기 때문에, 여기에서 계도에서 위성 자세의 변화는 방열판이 설치되는 위성 패널의 외부 입사자 열환경의 조건의 변화를 의미하기 때문에 주어진 식 (1)에서 \(Q_{\text{external}} \) 항에 임무 수행시 자세 변경의 영향이 반영된다.

2.4 위성 임무 수행 중의 자세 반영과 해석 결과

위성은 극심한 우주의 열환경의 변화 때문에 지구 저궤도의 발열을 위한 방열판 면적을 계획하고 다층박막판열체(Multi-Layer Insulation, MLI)로 모두 쌓여지게 되는 열사제를 바탕으로 한다. 이러한 조건에서 지구지향 자세를 가지는 식구간에서는 위성 패널 전체에 지구 복사열만이 입사하고 난구간에서 태양지향 자세를 유지하여 발열량이 부착된 위성 패널이 항상 태양광과 평행 상태를 유지하는 경우 위성이 계도상에서 적절적인 태양광의 영향을 받지 않고, 항상 지구 복사열과 Albedo의 영향을 받기 때문에 비교적 안정적인 입사 열조건을 가지게 된다. 이러한 열사에 조건에서 위성 패널의 내부면에 담착되고 임무 수행에 관계없이 항상 동작 상태를 유지하는 부품 박스는 계도상에서의 온도 변화폭이 최대/최소 온도차가 1-3도 정도로 적기 때문에 허용 한계 온도를 만족하고도 하는 방열판 면적을 적절하게 확보해 주는 것으로 열계어가 가능하다.

하지만, 위성어 임무수행을 위하여 지구지향의 자세를 취하는 경우는 태양광이 적절적으로 위성 패널에 입사하기 때문에 빠르게 자세 바뀌는 구간이 전 계도의 10% 정도의 짧은 구간이지만, 그 열적인 영향을 판단하는 것이 필요하다.
Fig. 3. 태양에서 바라 보았을 때의 궤도 상의 위성의 자세

주어진 Fig. 3은 태양에서 바라보았을 때 궤도 상의 각 위치에서의 위성의 자세와 진행방향을 나타낸 그림이다. 위성의 궤도 경사각이 90 deg를 넘기 때문에 태양에서 바라보았을 때 남반구에서 북반구로, 식구간에서 반대로 진행한다. 그리고를 통하여 임무를 수행하는 구간에서 직접적인 태양 광의 영향을 받는 역할 할 수 있으며 비록 태양방향으로 향하지만, 태양 전지판에 의하여 태양 광이 가려지는 일부분도 있다는 것도 알 수 있다.

이것은 비록 위성의 자세가 지구지향의 임무 자세로 바뀌고 태양광 입사 방향으로 기울어지만 위성의 형상조건에 따른 영향도 함께 고려되어야 하는 것을 의미하기 때문에 궤도상의 위성 자세 변화만으로 단순하게 열적 영향을 파악하는 것은 어렵고 실제적인 위성의 형상과 자세를 반영한 열현석이 필요하다는 것을 의미한다.

궤도상의 위성 자세에 따른 열적인 영향은 실제 열모델 상에 지구지향의 자세를 반영하였을 때의 온도 변화의 결과를 통하여 확인할 수 있다. Fig. 4와 Fig. 5는 임무수행 자세의 반영 여부에 따른 위성의 각 부분에 위치한 부품 백스의 4번의 궤도 동안의 온도 변화를 나타낸 그래프이다.

주어진 Fig. 4가 관측 임무 자세를 반영하지 않고 낮구간 동안에 태양지향 자세만을 유지하였을 때이고, Fig. 5가 임무 수행의 자세를 열모델에 반영하였을 때의 온도 결과이다. 이 때, 식구간에서의 위성의 자세는 지구지향으로 동일하다.

그래프에 나타낸 부품 백스는 위성의 각 부분에서 자세 반영 여부에 따른 영향을 파악할 수 있는 대표적인 것들이다. 방열판이 있는 패널에 부착되고 본체와 열적 연동을 하는 열통로 장착된 경우, 내부 플랫폼에 별도로 장착된 경우, 본체와 독립된 열전달 경로의 방열판을 가지는 경우, 위성 외부에 단열재(isolator)로 장착된 경우에 해당하는 부품 백스들을 선택하였고 그 명칭과 부착 위치, 부착방법은 다음과 같으며 Fig. 6은 각 부품 백스의 위치를 확인할 수 있는 그림이다.

부착 위치/본체 장착방법
부품의 활용온도

<table>
<thead>
<tr>
<th>부품명</th>
<th>위치/장착방법</th>
<th>온도 범위</th>
</tr>
</thead>
<tbody>
<tr>
<td>RWA</td>
<td>위성 내부 플랫폼/볼트장착</td>
<td>(-15 ~ 55 도)</td>
</tr>
<tr>
<td>PCDU</td>
<td>위성 패널/볼트장착</td>
<td>(-25 ~ 50 도)</td>
</tr>
<tr>
<td>배터리</td>
<td>독립적인 방열판/단열장착</td>
<td>(10 ~ 30 도)</td>
</tr>
<tr>
<td>S-대역 안테나</td>
<td>위성 외부/단열장착</td>
<td>(-100 ~ 100 도)</td>
</tr>
</tbody>
</table>
Fig. 6. 부품 박스 장착 위치

GPS 안테나 위성 외부/단열장착
(70 ~ 70 도)

개별적인 부분 박스별 업무자세 반영 여부에 따른 체도상의 온도결과의 특징은 다음과 같이
정리된다.

RWA는 위성 내부 블랙폼에 장착되어 외부 열환경의 직접적인 영향을 받지 못하는 부분에
위치하고 있다. 본 연구의 위성 자체가 천체로
서서 안정적인 열환경 조건에 있기 때문에 내부
블랙폼에 장착되는 부분박스는 거의 온도가 동일
하게 유지되고, 외부 열환경에 변화가 있는 업무
수행 자세를 반영하였을 때도 거의 영향을 받지
않는다는 것을 알 수 있다.

PCDU는 위성 밀폐의 내부면에 위성 본체와
열적으로 연동되어 장착되고, 밀폐의 바깥면에는
내부열을 방출하기 위한 방열판을 가지고 있다.
체도상에서의 온도를 보면 약간의 변화가 있지만
그 변화폭이 작고, 업무 수행의 자세를 반영하였을
때 PCDU의 온도가 0.5도 정도 하강한 것을
알 수 있다. 이것은 관측 업무 수행을 위해 지구
지향 자세를 가질 때, 그 면에 심층 우주를 바라
보는 정도가 증가하기 때문이다.

위성 밀폐의 각 방향에 따라 부착되어 있는
모든 부품 박스들의 온도 변화를 나타내지 않았
지만 업무 수행의 지구지향 자세를 취하면서 태
양 방향으로 기울어지는 옆면에 부착된 부품 박
스들은 약 0.1 ~ 0.6도 정도의 온도가 상승하고,
그 반대면에 부착되어 지구반면에 대하여 밀어들이
는 방향으로 향하게 되어 심층 우주를 더 많이
보게 되는 면의 부분 박스들은 비슷한 정도로 하
강하였다.

배터리는 PCDU와 같이 위성 패널방향으로 부
착되는 부품 박스이지만 위성 본체와 단열되어
독립적인 열설계를 가진다. 배터리 자체의 발열
판은 단열재(Insulator)를 사용하여 위성 본체에 장
착되고, 필요 발열판 면적 부분만을 제외하고 배
터리를 포함하여 발열판 전체를 MLI로 식혀져
외부 환경과도 열적으로 단열된다. 그래서 위성
본체와 열적으로 연동이 되어 있는 부분 박스에
비하여 자세 변화에 따른 외부 열환경의 변화에
兴业 영향을 받게 된다. 하지만, 낙구간에 태양지
향 자세를 유지하는 경우는 안정적인 외부입
사조건 때문에 체도상의 온도 변화는 크지 않지만,
업무 수행 자세에서는 배터리 장착면의 방향
이 태양을 바라보는 방향으로 기울어지기 때문에
2도 정도의 온도가 상승하는 결과를 나타내었다.
이것은 위성 내부의 패널이나 블랙폼에 장착된
다른 부분 박스에 비하여 자세 변화의 영향을 더
많이 받는다는 것을 의미한다.

마지막으로, 위성 본체의 외부에 단열되어 장
착되는 S-대역 안테나(S-Band Antenna)와 GPS
안테나의 온도 변화이다. 외부 공간으로 노출이
되는 안테나는 단열재로 외부열을 차단 할 수 없지만, 허용온도 범위가 넓기 때문에 white 페이
트 같은 단순한 외부 표면처리만 하게 된다. 자세
변화를 반영하지 않았을 때의 온도 결과인
Fig. 4를 보면, 두 안테나 모두 위성 바닥면에 위
치하여 태양지향 자세의 낙구간에서 직접적으로
태양광의 영향을 받기 때문에 체도상의 낙/식구
간 동안의 온도 변화가 약 50도 정도임을 알 수
있다. 그리고, Fig. 5에서는 업무수행 자세를 반
영하였을 때의 결과로서, 지구 지향의 자세를 가
지면서 태양광의 영향을 줄어들어 온도가 일정한
구간에서 하강 부분이 나타나고 최대 온도가 낮
아지는 것을 알 수 있다.

페인트를 적용하는 열설계를 적용하고 단열재
로 외부 입사열을 차단하지 않은 외부 장착 부품
은 위성 자세 변화에 열적으로 쉽게 영향을 받는
결과로 나타나지만, 위성 본체와는 단열 장착되
기 때문에 부품의 외부 열환경에 의한 온도 변화
가 본체에는 큰 영향을 주지 않는다. 하지만, 외
부 열환경에 대한 부품 자체의 온도 변화는 열설
계를 결정하는 기준 온도인 최대 또는 최소 온도
에 영향을 준다. 만약 업무 자세 반영에 따른 온
도가 부품의 허용 온도 범위를 벗어나게 되면 부
품에 대한 열설계 변경이 필요하게 된다. 그러므
로 위성의 외부에 단열되어 장착되는 부품이나
본체와는 독립적인 열설계를 가지는 부분박스는
궤도 열해석에서 임무 수행의 자세를 반드시 반
영하여 해석하는 것이 필요하며, 임무 수행의 자
세가 아니더라도 태양광에 변화가 있는 납구간
동안의 위성 자세 변화는 궤도 전체에 대하여
지속 시간이 짧더라도 열설계 측면에서는 필수적
으로 고려하여 해석이 필요한 부분이라는 결론을
얻을 수 있다.

III. 결 론

본 연구에서는 저궤도 위성의 궤도 열해석에
서 관측 임무 수행의 자세 반영에 따른 열적 영
향에 대하여 검토하였다.

위성 본체 내부에 장착되고 본체와 열적으로
연동되는 부분 박스들은 임무 수행 자세 반영에
큰 영향을 받지 않았다. 하지만, 위성 본체와 단
열되어 독립적인 열설계가 필요한 부분의 경우는
비록 임무 수행을 위해 자세로 변경하는 구간이
짧지만 외부 임사열의 변화에 비교적 큰 영향을
받는다는 것을 알 수 있었다.

본 연구를 통하여 궤도상의 관측 임무 자세를
반영한 열해석이 필요하고, 이를 바탕으로 각 부
품 박스의 허용 온도를 유지하기 위한 효율적인
열설계의 적용이 가능하다는 결론을 얻을 수 있
었다.

참고문헌

2) 김희정, 한범석, 이정준, 김상호, 김형동, 유재호, "저궤도 관측위성 열해석을 위한 예비
열설계 단계의 열모델의 개발", 한국우주과학회
보, 제16권 1호, 2007, pp. 133
3) 김희정, 한범석, 이정준, 김상호, 김형동, "저궤도 관측위성 예비 열설계 단계의 열해석",
한국우주과학회보 제16권 1호, 저궤도 관측위성
예비 열설계 단계의 열해석, pp. 134
4) Bum-Seok Hyun, Hui-Kyung Kim, & Jang-Joon Lee, "Thermal Evaluation on Yaw Motion of a Low
Earth Orbit Satellite with Fixed Solar Panels", 한국
우주과학회보, 제16권 1호, 2007, pp. 188
5) 김희정, 한범석, 이정준, "저궤도 위성 본체의 임무자세 기동에 따른 열적 영향 고찰",
6) KOMPSAT-3 Preliminary Design Audit, KARI, 2006.
7) Timothy D. Panzacik, Steven G. Ring, Mark J. Welch, & David Johnson, Thermal Desktop User’s Manual Version 4.8, Colorado,