DOI QR코드

DOI QR Code

Rotordynamic Analysis of a High Thrust Liquid Rocket Engine Turbopump

고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석

  • 전성민 (한국항공우주연구원 터보펌프팀) ;
  • 곽현덕 (한국항공우주연구원 터보펌프팀) ;
  • 윤석환 (한국항공우주연구원 터보펌프팀) ;
  • 김진한 (한국항공우주연구원 터보펌프팀)
  • Published : 2008.07.04

Abstract

A rotordynamic analysis is performed for a high thrust class liquid rocket engine turbopump considering the dynamic characteristics of ball bearings and pump noncontact seals. Complex eigenvalue problems are solved to predict the rotating natural frequencies and damping ratios as a function of rotating speeds. Synchronous rotor mass unbalance response and time transient response analyses are also performed to figure out the rotor critical speed and the onset speed of instability. From the numerical analysis, it is found that the rear bearing stiffness is most important parameter for the critical speed and instability because the 1st mode is turbine side shaft bending mode. The pump seal effect on the critical speed is enlarged as the rear bearing stiffness decreases and the front bearing stiffness increases.

볼 베어링과 펌프 비접촉 실의 동특성을 고려하여 고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석이 수행되었다. 회전 고유진동수와 감쇠비를 예측하기 위하여 회전속도에 따른 복소 고유치 해석이 수행되었다. 동기 회전체 질량 불평형 응답과 시간 과도 응답 해석을 통하여 회전체의 임계속도와 불안정 운전 시작 속도가 확인되었다. 수치 해석 결과로부터 후방 베어링 강성이 임계속도와 불안정성 예측에 있어서 가장 중요한 인자로 확인되었는데, 이는 1차 모드가 터빈부 회전축 굽힘 모드인 것에 기인한다. 임계속도에 있어서 펌프 실의 영향은 후방 베어링 강성이 감소할수록 그리고 전방 베어링 강성이 증가할수록 확대되는 것으로 나타났다.

Keywords

References

  1. Kim, J., Lee, E. S., Choi, C. H. and Jeon, S. M., "Current Status of Turbopump Development in Korea Aerospace Research Institute, "IAC-04-S.P.17, International Astronautical Congress 2004, Vancouver, Canada, October 2004
  2. Kim, J., Hong, S. S., Jeong, E. H., Choi, C. H. and Jeon, S. M., "Development of a Turbopump for a 30 Ton Class Engine", AIAA Paper 2007-5516, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, July 2007
  3. 전성민, 곽현덕, 윤석환, 김진한, "액체로켓 터보펌프의 임계 속도 해석", 한국항공우주학회지, 제33권 제 6호, 2005, pp. 92-99
  4. 전성민, 곽현덕, 윤석환, 김진한, "케이징 구조 유연성을 고려한 터보펌프 임계 속도 해석", 한국항공우주학회지, 제 34권 제 6호, 2006, pp. 92-97
  5. Jeon, S. M., Kwak, H. D., Yoon, S. H. and J. Kim, "Rotordynamic Analysis of a Turbopump with the Casing Structural Flexibility", Journal of Propulsion and Power, Vol. 24, No. 3, 2008, pp. 433-436 https://doi.org/10.2514/1.33551
  6. Childs, D. W., "The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic Instability Problem", Journal of Engineering for Power, Vol. 100, 1978, pp. 48-57 https://doi.org/10.1115/1.3446326
  7. Childs, D. W. and Moyer, D. S., "Vibration Characteristics of the HPOTP (High Pres- sure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)", Journal of Engineering for Gas Turbines and Power, Vol. 107, 1985, pp. 152-159 https://doi.org/10.1115/1.3239676
  8. Brune, C. and Lassoudiere, F., "Rotordynamics of the Vulcain $LH_2$ Turbopump Comparison between Test Results and Dynamic Analysis Calculations", Proceedings of 3rd International Conference on RotorDynamics, 1990, pp. 353-360
  9. Hashimoto, T., Yoshida, M., Watanabe, M., Kamijo, K. and Tsujimoto, Y., "Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers", Journal of Propulsion and Power, Vol. 13, No. 4, 1997, pp. 488-494 https://doi.org/10.2514/2.5210
  10. Shimura, T., Yoshida, M., Kamijo, K., Uchiumi, M., and Yasutomi, Y., "Cavitation Induced Vibration Caused by Rotating-Stall-Type Phenomenon in LH2 Turbopump", The 9th of International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, February 2002
  11. Uchiumi, M., Hori, S., Sakazume, N. and Kamijo, K., "Ground-Test and Flight Results of LE-7A FTP with an Alternate Inducer", Journal of Propulsion and Power, Vol. 22, No. 1, 2006, pp. 169-173 https://doi.org/10.2514/1.5245
  12. Childs, D. W., Turbomachinery Rotordynamics-Phenomena, Modeling, and Analysis, JOHN WILEY & SONS, New York, 1993
  13. Childs, D. W. and Kim, C., "Analysis and Testing for Rotordynamic Coefficients of Turbulent Annular Seals With Different, Directionally-Homogeneous Surface-Roughness Treatment for Rotor and Stator Elements", Journal of Tribology, Vol. 107, 1985, pp. 296-306 https://doi.org/10.1115/1.3261054
  14. ISO Standard 1940, 1998, Mechanical Vibration - Balance Quality Requirements of Rigid Rotors, Part I : Determination of Permissible Residual Unbalance, 1st Ed.

Cited by

  1. Vibration Characteristics of High Speed Rotary Bell Cup vol.25, pp.11, 2015, https://doi.org/10.5050/KSNVE.2015.25.11.771
  2. A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility vol.18, pp.2, 2014, https://doi.org/10.6108/KSPE.2014.18.2.035