시베리아산 전나무 바이오매스의 열분해-액화반응

윤성욱†

*단국대학교 공학교육혁신센터

Pyrolysis–Liquefaction of a Siberian Spruce Biomass

SUNGWOOK YOON*[†]

*Innovation Center for Engineering Education, Dankook University.

ABSTRACT

Siberian spruce, found in the northern temperature and boreal regions of the earth, is usable biomass as fuels. In this study, parameters of thermochemical degradation by pyrolysis-liquefaction reaction of siberian spruce such as the effect of reaction temperature, reaction time and degradation products and energy yields were investigated. The liquid products from pyrolysis-liquefaction of siberian spruce contained various kinds of cyclicketones, cresols, dimethyl phenols and benzenediols. Combustion heating value of liquid products from pyrolysis-liquefaction conversion processes was in the range of $7,650 \sim 7,800$ cal/g. The energy yield in pyrolysis-liquefaction of siberian spruce was as high as 69.5% after 40min of reaction at 400 °C. The liquid products from the thermochemical conversion of siberian spruce could be used as high octane value fuels and fuel additives.

KEY WORDS : Pyrolysis · Liquefaction(열분해 · 액화반응), Biomass(바이오매스), Spruce(전나 무), Alternative fuel(대체연료), New energy(신에너지),

1. 서 론

바이오매스에너지는 다른 에너지원과 비교할 때 재생에너지이기 때문에 자원이 무한 하다는 것

[†]Corresponding author : swyoon@dankook.ac.kr

과 폐기물의 바이오매스를 에너지화 함으로써 환 경정화를 시킬 수 있다는 것, 바이오매스를 연료로 변환하여도 대기 중의 탄산가스평형에 영향을 주 지 않는 장점을 가진 청정연료이다^{1,2)}

바이오매스를 직접 또는 간접적으로 액화시키

거나 가스화하여 연료로 사용하고자 하는 연구가 시도되고 있는데, T. B. Reed³⁾, M. Olazar 등⁴⁾ 과 F. A. Agblevor 등⁵⁾ 의 많은 연구자들에 의해 연 구가 진행되어 다양한 반응 조건하에서 분자 중에 산소를 풍부하게 함유하는 함산소물질 생성과 다 양한 화학제품의 제조가 가능한 화학물질이 생성 되어 석유대체 가능성이 있음을 보고하였다. 그러 나 바이오매스 전환에 의한 에너지 생산은 기술적 으로는 가능성이 있지만 폐기물처리 또는 공해방 지를 위한 이득을 제외한다면 화석연료를 사용하 는 것에 비하여 많은 비용이 들기 때문에 경제성 은 낮다고 보고된 바 있다⁶⁾.

그러나 최근의 석유값 폭등에서 보듯이 막대한 양의 에너지 및 자원을 해외에 의존하고 있는 우 리나라로서는 곧바로 에너지위기를 초래하였다. 따라서 바이오매스의 열화학적 전환에 의한 대체 에너지 개발은 화석연료 및 석유화학에 대한 의존 도를 줄일 수 있는 가장 적절한 방법 중 하나가 될 것으로 판단되며, 앞으로 다가올 화석연료의 고갈 에도 대비할 수 있는 길이 될 것으로 보인다.

시베리아 전나무(siberian spruce)는 지구상에 약 35~55종 존재하는 상록침엽수인 전나무의 일 종이다. 주로 north scandinvia와 siberia 등과 같 은 북반구의 추운지방에 분포하며 20~60m의 큰 키로 자라는 주요한 바이오매스자원이다. 따라서 본 연구에서는 전나무바이오매스에 대해 후속연구 인 동일 조건에서의 용매상열분해 (solvolysis)반 응과 비교하기 위한 실험의 일환으로서 열분해-액 화반응을 실시하여 열화학적 전환에 대한 전환수 율 및 생성물의 농도 변화 등과 같은 분해 특성을 조사하고, 고옥탄가의 연료물질 및 석유화학 원료 대체물질의 대량생성에 대한 가능성을 연구하여 목재의 열화학적 전환에 대한 기초 기술을 확립하 고자 하였다.

2. 실험

2.1 실험재료

본 실험에서 사용한 재료는 주로 건축자재로 쓰

Table 1 Compositions of siberian spruce and soft wood

Biomass	Composition (%)			
	Cellulose	Hemicellulose	Lignin	Ash
Siberian spruce	50.8	21.2	27.5	0.5
Soft wood	45.8	24.4	28.0	1.7

이는 전나무의 일종인 시베리아산 전나무로 연질 목(softwood)에 속한다. 볼밀에서 원료 목재를 24 시간 분쇄한 후 체눈금 5.6 메쉬의 체로 분말상의 목재입자를 분리한 다음 이것을 건조기에서 60℃ 로 24시간 건조하여 사용하였다. Table 1은 전나 무에 대한 화학분석 결과이다. 일반적인 연질목과 비교해보면 셀룰로오스 함량이 높은 반면 회분은 적은 특징을 가지고 있다.

2.2 실험 장치

열화학적 전환반응 장치로 고온·고압에 견딜 수 있는 autoclave형 반응기를 제작하여 사용하였 다. 반응기는 내용적이 300mL로 자동온도조절장 치, 압력조절장치, 외부유출관과 밸브, 안전장치 및 교반장치를 설치하였고, 반응기 내부의 반응상 태 변화를 실시간 모니터링하고 자동조절이 가능 하도록 구성하였다. Fig. 1에 실험장치를 나타냈 다.

2.3 실험 방법⁷⁾

Autoclave형 반응기로 열분해반응을 시행한 경 우에는 반응기에 원료 30g을 충진 후 상온에서부 터 가열하여 소정온도(200~400℃)까지 3℃/min의 속도로 상승시킨 다음 20~80분의 범위에서 20분 간격으로 유지시켰으며, 가열하는 동안 150~200 rpm으로 교반하였고 온도와 압력 변화를 측정하 였으며 반응 완료 후 실온까지 냉각 후 반응기를 개봉하였다.

화학반응 후의 생성물 성상은 액상물질과 고상 물질이 서로 반죽되어 있는 페이스트상이기 때문

Trans. of the Korean Hydrogen and New Energy Society(2008. 10), Vol. 19, No. 5

431

Fig. 1 Schematic diagram for the pyrolysis-liquefaction reactor

에 methylene chloride, n-hexane 및 acetone 등을 추출용매로 soxhlet 장치를 사용한 추출조작에 의 해 분리, 수득하였다. 추출한 반응생성물은 여과・ 분리한 후 액상생성물은 시료병에 담아 냉장장치 에서 4℃로 보관하였으며, 고상잔류물은 아세톤으 로 수회 세척한 후 다시 증류수로 세척하여 건조 기에서 105℃로 24시간 건조시킨 다음 중량을 측 정하고 액상생성물과 같은 방법으로 보관하였다.

2.4 분 석

2.4.1 전환율 측정

전나무의 열화학적 전환반응을 통한 액상 또는 기상 생성물의 수율을 정확하게 산출하는 것은 용 이하지 않기 때문에, 반응전의 시료 전나무의 중량 과 반응 후 잔류된 고형물질의 중량 차이로부터 다음 식을 사용하여 전나무의 전환율을 계산하였 다⁷⁾.

Conversion yield (%) =
$$\left(1 - \frac{M_r}{M_i}\right) \times 100$$

Mi : mass of initial dried lignin raw material Mr : mass of dried solid residue after reaction

2.4.2 에너지수율 계산

측정된 연소열량에 의해 열화학적 전환반응을

통해 생성된 액상물질에 대한 에너지 수율을 계산 하였는데, 액상생성물의 양은 미량증류장치7)를 사용하여 추출용매와 혼합된 생성물을 여러 차례 증류하여 추출용매 회수 후 잔류된 생성물(오일) 의 양을 측정하였으며, 반응 전의 원료물질의 열량 에 대한 반응 후 생성된 물질의 열량 증가율에 생 성물의 수득율을 곱하여 에너지 수율을 계산하는 식으로 다음과 같다.

> Energy yield = <u>heating value of oil</u> HHV of raw material

> > \times mass yield of oil \times 100

2.4.3 성분분석(Instrumental nalysis)

(1) GC/MS : 전나무의 열화학적 전환반응에 의해 생성된 액상 및 기상생성물의 성분분석을 위 하여 GC/MS(Agilent technologies, HP6890 Series GC system G1530A)에 HP-1 캐필러리 컬 럼을 장착하여 캐리어 가스로는 헬륨(He)을 사용 하였는데, column head pressure는 1.57Kg/cm², flow rate는 0.7ml/min, split ratio는 100:1로 하였 고 오븐온도는 초기 40℃에서 5℃/min의 속도로 상승시켜 280℃까지 체류시간 48분으로 하여 분석 하였다. 기상생성물의 분석을 위해서는 HP-PLOT Q 캐필러리 컬럼을 사용하였다.

(2) GC : 생성물의 정량을 위하여 GC(Youngin M600D)를 사용하였는데 컬럼과 분석조건은 GC/MS분석과 동일하였고 detector는 FID를 사용 하였다. 주 생성물질, 용매 및 특정물질의 정량을 위해서는 GC/MS를 통하여 확인된 성분 물질의 표준시료를 사용한 검량선을 작성하여 분석하였 다.

(3) FT-IR : 전나무 시료의 열화학적 전환반응 에 의한 결합의 절단 및 분해 경향 등을 조사하기 위하여 FT-IR(Bio-Rad, FTS 135)을 사용하여 분 석하였다. 액상의 시료는 KBr window를 사용하 였고 고상 시료는 일반적인 방법인 KBr 분말을 사용한 펠렛을 제조하여 측정영역 400~4000cm⁻¹ 에서 분석하였다.

(4) 원소분석 : 원소분석기(Fisons instrument, EA1108) 를 사용하여 전나무의 열화학적 전환반 응에 의한 분해잔류물 및 고상 생성물의 원소함량 변화를 측정하였다.

(5) 발열량 분석 : 전나무의 열화학적 전환반응 에 의해 생성된 액상 생성물이 연료로 사용 가능 한지 확인하기 위하여 PARR 1261 Calorimeter를 사용하여 KSM 2057법에 의해 발열량을 측정하였 다.

3. 결과 및 고찰

3.1 전나무의 열화학적 전환반응

3.1.1 열화학적반응 전환율

전나무시료에 열분해-액화반응에 의한 열화학 적 전환반응을 시행하여 분해 경향을 조사하였다. Fig. 2에 목재의 열분해-액화반응에서 반응온도에 대한 각 반응시간에 있어서의 전환율 변화곡선을 나타내었다. 그래프에서 알 수 있는 바와 같이 전 체적으로 200~400℃에서는 반응온도의 증가에 따 라 전환율이 급격히 상승하는 형태를 나타내었고 450℃에서는 전환율이 감소하는 경향을 보이는 것 으로 나타났다.

또한 200~350℃의 구간에서 급격한 전환율의

Fig. 2 Conversion yield in pyrolysis-liquefaction of siberian spruce on reaction time

상승이 있지만 반응시간에 따른 전환율 변화를 보 면 반응시간 20분~80분의 구간에서 비교적 완만 한 상승 형태를 보여주는 것으로 확인되었다. 반응 온도 400℃에서는 반응시간에 따른 전환율의 편차 가 크지 않고 비교적 일정한 수준을 유지하는 것 으로 확인되었으며, 이후 450℃로 증가함에 따라 전환율이 350℃와 비슷한 수준을 보이거나 근소한 수준으로 감소하는 것으로 나타났다.

따라서 전환율은 반응시간 40분까지는 전환율 이 급격히 상승하지만 40분 이후의 증가폭은 크지 않으며 반응온도 400℃에서의 전환율이 전체적으 로 가장 높은 60.2~61.9%를 나타내었음을 알 수 있었다.

한편, 열분해-액화반응에 의해 전나무와 목질 계 바이오매스 구성성분을 반응시켰을 경우 반응 온도 250~400℃에서의 전환율 변화를 비교한 결 과를 Fig. 3에 나타내었는데, 전나무의 전환율은 반응온도의 증가에 따라 서서히 분해가 이루어지 는 것으로 판단할 수 있는 지속적인 전환율의 상 승 형태를 보였고 400℃에서는 바이오매스 각 성 분 전환율의 평균값 정도에 도달하는 결과를 나타

Trans. of the Korean Hydrogen and New Energy Society (2008. 10), Vol. 19, No. 5

윤성욱

306 -1605 115 1080 020 1515 3427. 428 400°C 350 'n. Absorbance 300°C 250°C 200°C 4000 3280 2560 1840 1120 400 Wavenumber(cm⁻¹)

Fig. 3 Comparison of conversion yield from biomass components and siberian spruce by pyrolysis-liquefaction (Reaction time:40min)

내었다. 이러한 결과는 전나무의 열분해-액화반응 에 의한 열화학적 전환반응은 바이오매스의 구성 성분 중 특정 성분의 분해 현상이 전체적인 전환 율 변화에 주도적인 영향을 주지는 않는 것으로 생각되었는데 셀룰로오스, 헤미셀룰로오스 및 리 그닌이 서로 조합되어 목재를 구성하는 물리적인 구조로 인하여 열에 의해 3가지 성분이 동시에 분 해되기 어려운 구조를 갖기 때문인 것으로 판단되 었다⁸.

한편 450℃에서 전환율이 급격히 감소되는 것은 1차 생성물의 재탄화 및 재배치(rearrangement) 등의 반응이 있는 것으로 추측된다.

3.1.2 FT-IR 분석에 의한 전나무의 분해 특성

전나무의 열화학적 전환반응에 의한 분해 경향 을 조사하기 위하여 FT-IR을 사용하여 반응 후 잔류 고형물을 분석하였고 반응 이전의 목재의 FT-IR 스펙트럼과 비교하여 결합의 파괴 및 결합 세기의 감소 등을 검토하였다. Fig. 4에는 목재의 열분해-액화반응시 각 반응온도에서 잔류 고형물 과 탄화물이 혼합된 상태로 회수된 물질을 분석한

Fig. 4 FT-IR spectrum of solid residue remained after pyrolysis-liquefaction of siberian spruce at various temperature. (Reaction time : 40min)

FT-IR 스펙트럼을 나타내었다. 일반적으로 스펙 트럼에서 볼 수 있는 1,080cm⁻¹, 1,050cm⁻¹의 C-O stretching band, 1,115cm⁻¹의 O-H band 및 1,735cm⁻¹의 carbonyl stretching band는 헤미셀룰 로오스를 구성하는 결합으로 알려져 있으며, 1,515cm-1의 피크는 리그닌을 구성하는 방향족 고 리를 나타내는 것으로 알려져 있는데⁹⁾, Fig. 4를 보면 반응온도의 상승에 따라 1,115cm⁻¹에서의 O-H association band, 그리고 1,080cm⁻¹과 1,050cm⁻¹에서의 C-O stretching band가 특히 감 소하는 것을 확인하였다.

열분해-액화반응의 경우에는 반응온도 250℃이 상에서 1,000~1,500cm⁻¹사이의 피크가 주로 감소 하는 것으로 나타났으며, 전체 피크의 세기는 반응 온도가 상승할수록 감소되는 경향을 보였는데 전 환율과 비교하여 FT-IR 스펙트럼을 분석한다면 전환율이 가장 높은 정점까지는 열화학적 전환에 의해 기상 또는 액상 생성물로의 전환반응이 주로 일어나는 것으로 판단되었으며 전환율이 감소되는 영역에서는 탄화고형물 즉, 목탄(char)의 함량이

Fig. 5 Effect of reaction temperature on elemental contents of char in pyrolysis-liquefaction of siberian spruce (Reaction time : 40min)

증가되는 것으로 판단되었다¹⁰⁾.

3.2. 원소분석에 의한 전나무의 분해 특성

전나무의 분해경향 조사를 위한 또 다른 방법으 로 반응 후 생성된 고형물질을 원소분석하여 전나 무의 탄화도를 조사하였다. 먼저 반응이전의 전나 무시료를 원소분석한 결과 탄소 48.6%, 수소 6.1%, 산소 45.3%의 원소 함량을 갖는 것으로 나타났는 데 열분해-액화반응후 원소분석 결과를 토대로 한 원소함량 변화를 Fig. 5에 나타내었다.

그래프에서 알 수 있는 바와 같이 반응온도의 상승에 따라 탄소 함량은 급속도로 증가하고 산소 와 수소의 함량은 감소하는 현상을 보여주는데, 산 소에 비하여 수소함량의 감소율은 상당히 낮은 것 으로 분석되었다.

이 결과는 앞서 고찰한 Fig. 1의 전환율 변화그 래프를 통한 전나무의 분해 경향 검토의 결과와도 일치되는 경향을 보여주었는데 전환율 곡선은 40 0℃까지 증가하다가 450℃에서는 감소되는 경향 을 보인 것과 같이, 원소함량의 변화 그래프에서도

Fig. 6 The comparison of GC chromatogram for pyrolysis-liquefaction liquid products from siberian spruce

탄화율의 변화 추세가 서서히 상승 또는 감소하는 형태를 나타낸 것으로 확인되었다.

이상의 결과로부터 열분해-액화반응시 전환율 이 감소되는 현상이 나타나는 것은, 반 응기 내부 에서 목탄의 생성 비율이 증가하게 됨을 의미하며 일차적으로 생성된 액상 또는 기상 생성물 중 일 부가 반응온도가 증가함에 따라 탄화되기 때문에 나타나는 현상이라고 판단되었다.

3.3 전나무 열분해생성물의 성분 분석

Fig. 6에는 반응온도 350~450℃에서 50℃ 간격 으로, 반응시간 40분으로 하여 목재의 열분해-액 화반응에 의해 생성된 액상물질의 GC 크로마토그 램을 비교할 수 있도록 나타내었으며 확인된 주요

Trans. of the Korean Hydrogen and New Energy Society (2008. 10), Vol. 19, No. 5

Table 2 Main products from pyrolysis- liquefaction of siberian spruce

Peak No.	Product			
1	2-methyl-4-heptanone			
2	Phenol			
3	2,3-dimethyl-2-cyclopenten-1-one			
4	2-methyl phenol (o-cresol)			
5	3-methyl phenol (m-cresol)			
6	2-methoxy phenol			
7	1,2-benzenediol			
8	2-methoxy-4-methyl phenol			
9	3-methyl-1,2-benzenediol			
10	4-methyl catechol			
11	2-methoxy-4-ethyl phenol			
12	4,5-dimethyl-1,3-benzenediol			
13	2-methoxy-4-ethyl-6-methyl phenol			
14	2-methoxy-4-propyl phenol			
15	2,5-dimethyl furan			
16	Toluene			
17	2-methyl cyclopentanone			
18	3-methyl cyclopentanone			
19	2-methyl-4-heptanone			
20	3-methyl cyclopent-2-enone			
21	2,3,4-trimethyl-2-cyclopenten-1-one			
22	2,6-dimethyl phenol			
23	2-ethyl phenol			
24	2,4-dimethyl phenol			
25	2,5-dimethyl phenol			
26	3,5-dimethyl phenol			
27	2,3-dimethyl phenol			
28	2,4,6-trimethyl phenol			
29	4-ethyl-3-methyl phenol			
30	4-ethyl-1,3-benzenediol			
31	2-methyl-1-benzoxathiole			
32	dehydroabietic acid			
33	Benzene			
34	2-pentanone			
35	4-methyl-2-pentanone			
36	Ethyl benzene			
37	1,2-dimethyl benzene			
38	1,4-dimethyl benzene			
39	(1-methylethyl)-benzene			
40	n-propyl benzene			
41	C3-benzene			
42	3,4-dimethyl phenol			
43	3,6-dimethyl-pyro[1,2-e]imidazole			

생성물을 표시하였는데 그에 대한 생성물 명을 Table 2에 명시하였다.

그림과 표에서 알 수 있듯이, 반응온도 350℃에

서는 목재의 구성 성분 중 리그닌의 분해를 특징 적으로 나타내는 물질인 guaiacol류 생성이 두드 러짐을 알 수 있었으며 그 외의 물질은 상당히 낮 은 농도로 생성된 것으로 분석되었는데 셀룰로오 스 및 헤미셀룰로오스의 분해에 의해 생성되었음 을 판단할 수 있는 물질은 검출되지 않았다¹¹⁾.

반응온도 400℃에서의 생성물 분석 결과, 2,5-dimethyl furan이 미량 생성된 것으로 분석되 었는데 전체적으로 350℃에서의 생성물에 비해 많 은 종류의 물질이 높은 농도로 생성되었음을 알 수 있었으며, 비록 낮은 농도이지만 방향족 이외의 물질로 2-methyl cyclopentanone, 3-methyl cyclopentanone, 3-methyl-2-cyclopenten-1-one 및 2,3,4-trimethyl-2-cyclopenten-1-one 등의 사 이클릭케톤 화합물이 다수 생성되었음을 확인할 수 있었다¹¹⁾.

또한 cresol류, dimethyl phenol류 및 ben zenediol류가 높은 농도로 존재하였으며, 리그닌의 분해와는 달리 소량의 2-methoxy phenol이 존재 하는 것으로 조사되었다. 전나무의 분해는 전나무 의 구성 성분 각각을 단독으로 분해하는 경우와 는 달리 같은 반응조건일 경우 상대적으로 느리게 진행되는 것으로 판단할 수 있었는데 이는 전나무 를 구성하는 각 성분들의 물리적, 화학적 결합 구 조가 견고하여 각 구성 성분을 따로 분리하여 반 응을 진행시킬 때 보다 열에 대한 저항성이 증가 되는 현상 때문인 것으로 판단되었다.

반응온도 450℃에서의 생성물 분석 결과, 400℃ 에 비해 비교적 높은 분자량의 물질이 다수 분해 되었음을 확인할 수 있었고 그에 따라 저분자량 물질의 농도가 점차 증가하는 경향을 보여주었으 며 축합에 의해 생성되는 것으로 판단되는 다환체 방향족 물질 증가현상도 거의 발견되지 않는 것으 로 나타났다.

주 생성물질은 역시 phenol류로, o-cresol 및 m-cresol이 가장 높은 농도를 나타내는 것으로 확 인되었고, 400℃에서 높은 농도로 생성되었던 benzenediol류가 소멸된 것으로 분석되었으며 dimethyl benzene류, ethyl benzene 및 benzene

Table 3 Heating value and mass yield and energy yield of liquid products for siberian spruce from each reaction condition

Reaction condition	Heating value(cal/g)	Mass yield (g-oil/100g-raw material)	Energy yield(%)
350℃, 40min	7,650	37.3	67.4
400℃, 40min	7,800	37.7	69.5

등이 새롭게 생성되었다.

3.4 열분해 생성물의 액체연료로서의 타당성 검토

3.4.1 생성물의 연소열량 측정 및 에너지 수율계산

본 실험을 통해 제조한, 전나무의 열분해-액화 반응에 의해 제조한 시료 2종에 대하여 연소열량 측정장치를 사용하여 KSM 2057법에 의해 열량을 측정하여 얻은 HHV값 4232.2 cal/g를 이용하여 질량수율 로부터 구한 에너지 수율 값을 Table 3 에 나타내었다.

목재의 열분해-액화반응에 의해 생성된 액상시 료는 미량증류장치를 사용하여 액상생성물의 추출 에 사용된 용매를 회수한 후 생성된 액상물질의 양을 측정한 후 연소열량을 측정하였다.

표에 나타낸 바와 같이 연소열량은 반응온도 400℃, 반응시간 40분일 때가 7,800 cal/g 으로 35 0℃, 40분의 조건에서 생성된 오일의 열량 7,650 cal/g 에 비해 다소 높게 나타났다. 또한 질량수율 과 에너지수율도 오히려 350℃, 40분의 조건보다 400℃, 40분의 조건에서 생성된 오일이 각각 0.4g-oil/100g-raw material, 1.9%가 높은 것으로 나타났다. 여기서 본 실험의 발열량 값이 기존의 보고값들⁹⁻¹¹⁾보다 다소 높게 평가된 것은 미량증류 장치로 액상물질의 증류 시 증류 조작을 여러 차 례 반복했음에도 불구하고 추출용매로 사용한 acetone이 오일에 남아 있을 수 있는 가능성이 있 어 이로 인한 발열량과 수득 오일의 양 증가와 그 에 따른 에너지 수율의 증가가 있을 수 있기 때문 에 좀 더 세밀한 검토가 필요할 수도 있다고 판단 된다.

한편 앞에서 확인한 전환율을 비롯하여 효율과 수율을 감안하여 종합적으로 판단하여 볼 때 본 실험조건에서는 전나무의 열분해-액화반응의 최 적조건은 400℃, 40분의 조건인 것으로 확인할 수 있었다. 다만 실제로 적용가능성을 고려할 때는 이 온도를 유지하기 위한 에너지 소모량과 이에 따른 에너지 수율의 증가량에 대한 상관관계를 복합적 으로 고려할 필요가 있을 것으로 판단된다.

한편 본 연구와 관련하여 여러 가지 시판연료에 대한 연소열량과 몇 가지 용매의 연소열량을 같은 방법을 사용하여 측정하여 보았는데, 시판 가솔린 13,120 cal/g, 등유 11,980 cal/g, 경유 11,650 cal/g 로 본 연구를 통해 생성된 액상 생성물의 열량수 준은 시판 연료들의 약 58~70% 정도에 이르는 것으로 나타났으며 특히 최근에 와서 바이오 연료 로 크게 주목을 받고 있는 무수에탄올의 연소열량 7,540 cal/g에 비해서는 약 2~5% 정도 높은 것으 로 나타나 앞으로 대체연료 및 연료 첨가제로서 사용 가능성이 있는 것으로 판단되었다¹²⁾.

하지만 열분해 오일의 성상이 다양하므로 생성 된 물질을 연료 및 연료 첨가제, 석유화학공업 대 체물질, 정밀화학공업 원료 등으로 사용하기 위해 서는 pH, 점성, 수분 함유에 따른 연소시 발화지연 이나 carbon deposit의 형성, 상온 저장시 재고분 자화되는 문제점 등을 반드시 고려해 주어야 할 필요가 있다고 판단된다.

4. 결 론

전나무의 열분해-액화 반응에 의한 분해특성에 관한 연구를 수행하여 다음과 같은 결론을 얻을 수 있었다.

- 전나무의 열분해-액화 반응시 전환율에 대한 최적조건은 400℃, 40분이며 이때 전환율은 60.2%이었다.
- 2) 발열량은 400℃, 40분에서 7,800 cal/g으로 높

Trans. of the Korean Hydrogen and New Energy Society (2008. 10), Vol. 19, No. 5

았으며 질량수율과 에너지 수율도 37.7g-oil/100g-raw material, 69.5%로 높았기 때문에 본 실험조건에서 최적반응조건은 40 0℃, 40분이었으나, 이 온도를 유지하기 위한 에너지 소모량과 이에 따른 에너지 수율의 증 가량에 대한 상관관계를 복합적으로 고려할 필 요가 있을 것으로 판단된다.

- 3) 액상 생성물의 연소열량 측정 결과, 생성된 오 일의 열량이 7,650~7,8000 cal/g인 것으로 나 타나 시판 가솔린, 등유 및 경유의 58~70% 수 준이었으며 무수에탄올에 비해서는 약 2~5% 증가된 것으로 나타나 목재의 열분해-액화 반 응반응에 의해 생성된 액상 생성물은 pH, 점성, 수분 함유에 따른 연소시 발화지연이나 carbon deposit의 형성, 상온 저장시 재고분자화되는 문제점 등을 해결한다면 연료와 연료첨가물질 및 화학공업원료로 사용할 가능성이 있을 것으 로 판단되었다.
- 4) 전나무의 열분해-액화 반응에서 반응온도 40
 0℃부근에서 가장 높은 농도로 생성되었던 물 질은 benzenediol류인 것으로 확인되었고, 액상 생성물의 연료가치를 보다 향상시키기 위해서 는 phenol류의 함량을 감소시킬 필요가 있는 것으로 판단되었다.

참 고 문 헌

- Donald L. Klass, Biomass for Renewable Energy, Fuels, and Chemicals, Academic Press, 1998.
- E. Poitrat and G. Gosse, "Liquid fuels in France ; Experiments and commercial application", Proc.of Euro. Energy Crop Confer., 1996, Enschede, Netherland.
- T. B. Reed, "The Combustion, Pyrolysis, Gasification and Liquefaction of Biomass", Energy from Biomass; 1st E.C. Confer. Vol. 11, 1980, pp. 496-508.
- 4) M. Olazar, R. Aguado, and J.Bilbao,

"Pyrolysis of Biomass in a Jet Spouted Bed Reactor", Bioresource Technology, Vol. 60, 1997, pp. 51-58.

- F. A. Agblevor, S. Besler, and A. E. Wieselogel, "Fast Pyrolysis of Stored Biomass Feedstocks" Energy and Fuels, Vol. 9, 1995, pp. 635-640.
- A. Demirbas, "Yields of Oil Products from Thermochemical Biomass Conversion Processes", Energy Convers. Mgmt., Vol. 39(7), 1998, pp. 685-690.
- Sung-Wook Yoon, Jong-Jib Lee and Byung-Hak Lee,"Degradation Properties and Production of Fuels in Pyrolysis-Liquefaction of Lignin", KSEE, Vol. 25(5), 2003, pp. 560-566.
- 8) W. Fukushima et al., "木質の形成 バイオ マス科學への招待" Life Science Publish ing Inc. 2006.
- A. Demirbas, "Calculation of Higher Heating Values of Biomass Fuels", *Fuel*, Vol. 76(5), 1997, pp. 431-434.
- D. K. Johnson, H. L. Chum, R. Anzick, and R. M. Baldwin, "Preparation of a Lignin-Derived Pasting Oil", Appl. Biochem. and Biotech., Vol. 24/25, 1990, pp. 31-40.
- F. A. Agblevor, S. Besler, and A. E. Wieselogel, "Fast Pyrolysis of Stored Biomass Feedstocks" Energy and Fuels, Vol. 9, 1995, pp. 635-640.
- A. Demirbas, "Yields of Oil Products from Thermochemical Biomass Conversion Processes", Energy Convers. Mgmt., Vol. 39(7), 1998, pp. 685-690.