DOI QR코드

DOI QR Code

Toxin Profile in the Liver of Puffer Fish, Takifugu niphobles, and Changes in Mouse Toxicity by pH and Heating Conditions

복섬 간장의 독성분과 pH 및 가열 조건에 따른 독성의 변화

  • Jang, Jun-Ho (Graduate School of Agricultural Science, Tohoku University) ;
  • Yun, So-Mi (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Jung-Soo (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Lee, Jong-Soo (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University)
  • 장준호 ;
  • 윤소미 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 김정수 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 이종수 (경상대학교 해양생명과학부, 해양산업연구소)
  • Published : 2008.05.31

Abstract

Tetrodotoxin (TTX) analogues were first determined from the liver extracts of puffer fish, Takifugu niphobles, by LC/MS with Hydrophilic Interaction Liquid Chromatography (HILIC). In total, 7 TTX analogues were detected within 20 minutes as follows; 5,6,11-trideoxyTTX (34.0%, 1,029.6 nmol/g), 6,11-dideoxyTTX (29.3%, 887.6 nmol/g), TTX (22.1%, 667.8 nmol/g), 4,9-anhydro-TTX (11.2%, 339.3 nmol/g), 11-deoxyTTX+5-deoxyTTX (2.6%, 78.6 nmol/g), and 4-epiTTX (0.8%, 23.6 nmol/g). Mouse toxicity of diluted liver extracts showed the highest toxicity at pH 3 (8.7 MU/mL) and decreased, as increasing pH, to 1.4 MU/mL at pH 10. At acidic (pH 5) and neutral conditions (pH 7), mouse toxicity of liver extracts (79 MU/mL) decreased slowly, as increasing temperature from $80^{\circ}C$ to $115^{\circ}C$, and time until 1 hour; in contrast, at the akaline condition (pH 9), the toxicity decreased rapidly to the more than half within 10 minutes. Individual toxicity of the fillet of T. niphobles were between $43.2{\sim}106.7$ MU, and $64{\sim}78%$ of its toxicity was eluted to soup when boiled with 3 volumes of water during 10 minutes.

우리나라 남해안 연안에 서식하는 복섬(Takifugu niphobles) 간장의 TTX유도체들을 활성탄 칼럼을 이용하여 부분 정제하고, Hydrophilic Interaction Liquid Chromatography(HILIC)를 사용한 LC/MS(SIM mode)로 분석하였으며, pH와 가열 조건에 따른 독성 변화를 조사하고 복섬 fillet으로 복국 조리시 독성의 분포를 조사하였다. 복섬 간장의 독성분은 LC/MS에 의하여 7개의 성분이 분석되었으며, 각 성분의 함량과 조성은 5,6,11-trideoxyTTX(34.0%, 1,029.6nmol/g), 6,11-dideoxyTTX(29.3%, 887.6 nmol/g), TTX (22.1%, 667.8 nmol/g), 4,9-anhydroTTX(11.2%, 339.3nmol/g), 11-deoxyTTX+5-deoxyTTX(2.6%, 78.6 nmol/g), 4-epiTTX(0.8%, 23.6 nmol/g), 5,6,11-trideoxyTTX(34.0%), 6,11-dideoxyTTX(29.3%), TTX(22.1%), 4,9-anhydroTTX (11.2%), 4-epiTTX(0.8%)이었다. 복섬 간장 추출물 희석액의 독성은 pH에 따라 크게 변하여 pH 3에서 8.4 MU/mL로 최고의 독성을 나타내었고, 알칼리로 갈수록 독성이 감소하여 pH 10에서는 pH 3의 1/7(1.4 MU/mL)을 나타내었다. 각각의 pH(pH 5, 7, 9)에서 $80^{\circ}C,\;100^{\circ}C,\;115^{\circ}C$를 유지하며 가열 시 온도는 높을수록, 시간은 길수록 독성은 감소하였다. 특히, 산성이나 중성에서는 독성이 완만하게 감소하는 경향을 보였으나, 알칼리 영역인 pH 9에서는 가열 10분 후에 $80^{\circ}C$의 경우라도 최초 독성(79 MU/mL)이 1/2 이하로 급격히 감소하였으며, $115^{\circ}C$에서는 완전 소멸하였다. 복섬 개체별 fillet 중의 총 독량은 $43.2{\sim}106.7$ MU로 개체에 따라서 2.5배까지 독량의 차이를 나타내었으며, 복섬 가식부에 3배량의 물을 가하여 10분간 끓일 경우 총 독량의 $64{\sim}78%$는 국물 중으로 용출되어 나와 육에 남아있는 것보다 독성이 강하였다.

Keywords

References

  1. Goto T, Kishi Y, Takahashi S, Hirata Y. 1965. Tetrodotoxin. Tetrahedron 21: 2059-2088 https://doi.org/10.1016/S0040-4020(01)98344-9
  2. Jang J, Yotsu-Yamashita M. 2006. Distribution of tetrodotoxin, saxitoxin, and their analogs among tissues of the puffer fish Fugu pardalis. Toxicon 48: 980-987 https://doi.org/10.1016/j.toxicon.2006.07.034
  3. Yotsu-Yamashita M. 2001. Chemistry of puffer fish toxin. J Toxicol Toxin Reviews 20: 51-66 https://doi.org/10.1081/TXR-100102536
  4. Yasumoto T, Yotsu M, Murata M, Naoki H. 1988. New tetrodotoxin analogues from the newt Cynops ensicauda. J Am Chem Soc 110: 2344-2345 https://doi.org/10.1021/ja00215a078
  5. Yotsu-Yamashita M, Yamagishi Y, Yasumoto T. 1995. 5,6,11-trideoxytetrodotoxin from the puffer fish, Fugu poecilonotus. Tetrahedron Lett 36: 9329-9332 https://doi.org/10.1016/0040-4039(95)02020-P
  6. Mebs D, Yotsu-Yamashita M, Yasumoto T, Lotters S, Schluter A. 1995. Further report of the occurrence of tetrodotoxin in Atelopus species. Toxicon 33: 246-249 https://doi.org/10.1016/0041-0101(94)00149-3
  7. Yotsu-Yamashita M, Schimmele B, Yasumoto T. 1999. Isolation and structural assignment of 5-deoxytetrodotoxin from the puffer fish Fugu poecilonotus. Biosci Biotechnol Biochem 63: 961-963 https://doi.org/10.1271/bbb.63.961
  8. Yotsu-Yamashita M, Goto A, Nakagawa T. 2005. Isolation of 4-S-cysteinyltetrodotoxin from the liver of the puffer fish Fugu pardalis, and formation of the adducts of 4,9-anhydrotetrodotoxin with thiols. Chem Res Toxicol 18: 865-871 https://doi.org/10.1021/tx050015g
  9. Kodama M, Sato S, Sakamoto S, Ogata T. 1996. Occurrence of tetrodotoxin in Alexandrium tamarense, a causative dinoflagellate of paralytic shellfish poisoning. Toxicon 34: 1101-1105 https://doi.org/10.1016/0041-0101(96)00117-1
  10. Kawabata T. 1978. Pufferfish toxin. In The manual for the methods of food sanitation tests II. Japan Food Hygienic Association, Tokyo, Japan. p 231-240
  11. Yasumoto T, Michishita T. 1985. Fluorometric determination of tetrodotoxin by high performance liquid chromatography. Agric Biol Chem 49: 3077-3080 https://doi.org/10.1271/bbb1961.49.3077
  12. Yotsu M, Endo A, Yasumoto T. 1989. Improved tetrodotoxin analyzer. Agric Biol Chem 53: 895-898
  13. Shoji Y, Yotsu-Yamashita M, Miyazawa T, Yasumoto T. 2001. Electrospray ionization mass spectrometry of tetrodotoxin and its analogs: liquid mass spectrometry, and liquid chromatography/tandem mass spectrometry. Anal Biochem 290: 10-17 https://doi.org/10.1006/abio.2000.4953
  14. Nakagawa T, Jang J, Yotsu-Yamashita M. 2006. Hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry of tetrodotoxin and its analogs. Anal Biochem 352: 142-144 https://doi.org/10.1016/j.ab.2006.02.010
  15. Jang J, Yotsu-Yamashita M. 2007. 6,11-Dideoxytetrodotoxin from the puffer fish, Fugu pardalis. Toxicon 50: 947- 951 https://doi.org/10.1016/j.toxicon.2007.06.026
  16. special plan for Liver of Puffer fish. 2005. Nikkei Restaurant, on line, 9, http://nr.nikkeibp.co.jp/topics/NRT0003502/
  17. Honda J, Ichimaru S, Arakawa O, Takatani T, Noguchi T, Ishizaki S, Nagashima Y. 2007. Toxicity of puffer fish fins. J Food Hyg Soc Japan 32: 149-154
  18. Noguchi T, Takatani T, Arakawa O. 2004. Toxicity of puffer fish cultured in netcages. J Food Hyg Soc Japan 45: 146-149 https://doi.org/10.3358/shokueishi.45.146
  19. Noguchi T. 2007. Is the puffer fish safe? J Jap Soc Home Economics 58: 147-148
  20. Puffer fish can be edible. 2004. Asahi news paper. 2004. 5. 12
  21. KFDA. 2004. Provisory regulation on fisheries products in food standard. Munyeongsa, Seoul. p 504
  22. Kim JH, Gong OL, Mok JS, Lee TS, Park JH. 2003. Characteristics of puffer fish poisoning outbreaks in Korea (1991-2002). J Food Hyg Safety 18: 133-138
  23. Ryu CH, Kim DG, Jang JH, Lee JS. 2003. Toxicity of grass puffer, Takifugu niphobles (Bogseom). J Kor Soc Food Sci Nutr 32: 986-990 https://doi.org/10.3746/jkfn.2003.32.7.986
  24. Kim JH, Son TS, Mok JS, Oh EK, Hwang HJ, Yu HS, Lee HJ. 2006. Toxicity of the puffer fish, Takifugu pardalis (Jolbok) and Takifugu niphobles (Bokseom) from coastal area of Korea. J Kor Fish Soc 40: 269-275 https://doi.org/10.5657/kfas.2007.40.5.269
  25. Shimada K, Ohtsuru M, Nigota K. 1985. Effects of coexisting materials on the mouse bioassay method for determination of tetrodotoxin. Food Hyg Soc Japan 26: 507-510 https://doi.org/10.3358/shokueishi.26.507
  26. Kim JS, Hur MS, Kim HS, Ha JW. 2007. Fundamental and applification of fisheries processing. Hyoilbooks Inc., Seoul. p 290-295

Cited by

  1. Toxicity and anti-inflammatory activity of detoxified puffer fish ovary vol.9, pp.2, 2017, https://doi.org/10.1007/s13530-017-0311-7
  2. Free Amino Acid in Dropwort(Oenanthe javanica) Extract and it’s Effect to the Survival Time of Mice Poisoned with Puffer Fish Toxin vol.31, pp.4, 2008, https://doi.org/10.13000/jfmse.2019.8.31.4.1114