Influence of Cerebral Protection Methods in Thoracic Aortic Surgery Using Hypothermic Circulatory Arrest

저체온 순환정지를 이용한 흉부 대동맥 수술 시 뇌관류 방법에 따른 수술결과

  • Kim, Jae-Hyun (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Institute) ;
  • Na, Chan-Young (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Institute) ;
  • Oh, Sam-Sae (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital, Sejong Heart Institute)
  • Published : 2008.04.05

Abstract

Background: Protection of the brain is a major concern during thoracic aortic surgery using hypothermic circulatory arrest (HCA). This study compares the surgical outcomes of two different cerebral protection methods in thoracic aortic surgery using HCA: retrograde cerebral protection (RCP) and antegrade cerebral protection (ACP). Material and Method: We retrospectively reviewed data on 146 patients who underwent thoracic aortic surgery from May 1995 to February 2007 using either RCP (114 patients, Group 1) or ACP (32 patients, Group 2) during HCA. There were 104 dissections (94 acute and 10 chronic) and 42 aneurysms (41 true aneurysms and 1 pseudoaneurysm), and all patients underwent ascending aortic replacement. There were 33 cases of hemiarch replacement, 5 of partial arch replacement, and 21 of total arch replacement. Result: The two groups were similar in preoperative and operative characteristics, but Group 2 had more elderly (over 70 years old) patients (34.4% vs. 10.5%), more coronary artery diseases (18.8% vs. 4.4%), more total arch replacements (46.9% vs. 5.3%) and longer HCA time ($50{\pm}24$ minutes vs. $32{\pm}17$ minutes) than Group 1. The operative mortality was 4.4% (5/114) and 3.1% (1/32), the incidence of permanent neurologic deficits was 5.3% (6/114) and 3.1% (1/32), and the incidence of temporary neurologic deficits was 1.8% (2/114) and 9.4% (3/32) in Groups 1 and 2, respectively. There were no statistical differences between the two groups in operative mortality, postoperative bleeding, or neurologic deficits (permanent and temporary). Conclusion: The early outcomes of aortic surgery using HCA were favorable and showed no statistical difference between RCP and ACP. However, the ACP patients endured longer HCA times and more extended arch surgeries. ACP is the preferred brain protection technique when longer HCA time is expected or extended arch replacement is needed.

배경: 뇌관류 방법은 저체온 순환정지를 이용한 흉부 대동맥 수술 시 가장 중요한 관심사이다. 이 연구는 저체온 순환정지를 이용한 흉부 대동맥 수술 시 뇌관류 방법(역행성 뇌관류법과 전방성 뇌관류 법)에 따른 수술 결과를 비교하였다. 대상 및 방법: 1995년 5월부터 2007년 2월까지 저체온 순환정지를 이용한 흉부 대동맥 수술 중 역행성 뇌관류법이나 전방성 뇌관류법을 이용한 146명의 환자를 연구대상으로 후향적으로 분석하였다. 이 중 역행성 뇌관류법을 사용한 경우가 114예(1군)였으며 전방성 뇌관류법은 32예(2군)에서 사용되었다. 원인별로는 대동맥 박리증이 104명(급성 박리증 94명, 만성 박리증 10명), 대동맥류가 42명(진성 대동맥류 41명, 가성 대동맥류 1명)이었다. 수술 범위로는 대동맥궁 완전치환술 21명, 대동맥궁 부분치환술 5명, 대동맥궁 반치환술을 33명에서 시행하였으며 모든 환자에서 상행대동맥 치환술을 시행하였다. 결과: 두 군간의 수술 전 혹은 수술 특성은 대부분 비슷하였지만 2군에서는 70세 이상 고령 환자가 더 많았으며(34.4% vs. 10.5%), 관상동맥 질환이 더 많았고 (18.8% vs. 4.4%), 대동맥궁 완전치환술을 더 많이 시행하였고 (46.9% vs. 5.3%), 저체온 순환정지 시간이 더 걸었다 ($50{\pm}24$분 vs. $32{\pm}17$분). 수술 사망률은 1군이 4.4% (5/114)였고 2군이 3.1% (1/32)였다. 영구적 뇌손상 발생률은 1군이 5.3% (6/114)였고 2군이 3.1% (1/32)였다. 일시적 뇌손상은 1군이 1.8% (2/114)였고 2군이 9.4% (3/32)였다. 수술 사망률, 수술 후 출혈 및 뇌손상(영구적 혹은 일시적) 발생률은 두 군간 통계적 유의성이 있는 차이는 보이지 않았다. 결론: 저체온 순환정지를 이용한 대동맥 수술의 조기 결과는 양호하였고 뇌관류법에 따른 차이는 관찰되지 않았다. 하지만 저 체온 순환정지 시간이 더 길거나 더 광범위한 대동맥궁 수술에서 전방성 뇌관류법이 이용되었음에도 불구하고 대등한 결과를 보인 점을 고려할 때 저체온 순환정지 시간이 걸어질 것으로 예상되거나 수 술범위가 커질 것으로 예상되는 경우에는 전방성 뇌관류법을 사용하는 것이 바람직할 것으로 사료된다.

Keywords

References

  1. Mault J, Ohtake S, Klingensmith M, Heinle J, Greeley W, Ungerleider R. Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection. Ann Thorac Surg 1993;55:57-64 https://doi.org/10.1016/0003-4975(93)90473-U
  2. Mezrow C, Midulla P, Sadeghi A, et al. Evaluation of cerebral metabolism and quantitative electroencephalography after hypothermic circulatory arrest and low-flow cardiopulmonary bypass at different temperatures. J Thorac Cardiovasc Surg 1994;107:1006-1019
  3. Kawata H, Fackler J, Aoik M, et al. Recovery of cerebral blood flow and energy state in piglets after hypothermic circulatory arrest versus recovery after low-flow bypass. J Thorac Cardiovasc Surg 1993;106:671-685
  4. Gega A, Rizzo JA, Johnson MH, Tranquilli M, Farkas EA, Elefteriades JA. Straight deep hypothermic arrest: experience in 394 patients supports its effectiveness as a sole means of brain preservation. Ann Thorac Surg 2007;84:759-767 https://doi.org/10.1016/j.athoracsur.2007.04.107
  5. Coselli JS, LeMaire SA. Experience with retrograde cerebral perfusion during proximal aortic surgery in 290 patients. J Card Surg 1997;12(2 Supple):322-325 https://doi.org/10.1111/j.1540-8191.1997.tb00146.x
  6. Safi HJ, Letsou GV, Iliopoulos DC, et al. Impact of retrograde cerebral perfusion on ascending aortic and arch aneurysm repair. Ann Thorac Surg 1997;63:1601-1607 https://doi.org/10.1016/S0003-4975(97)00296-8
  7. Boeckxstaens CJ, Flameng WJ. Retrograde cerebral perfusion does not perfuse the brain in nonhuman primates. Ann Thorac Surg 1995;60:319-328 https://doi.org/10.1016/0003-4975(95)00409-E
  8. Reich DL, Uysal S, Ergin MA, Griepp RB. Retrograde cerebral perfusion as a method of neuroprotection during thoracic aortic surgery. Ann Thorac Surg 2001;72:1774-1782 https://doi.org/10.1016/S0003-4975(01)02718-7
  9. Di Eusanio M, Schepens MA, Morshuis WJ, Di Bartolomeo R, Pierangeli A, Dossche KM. Antegrade selective cerebral perfusion during operations on the thoracic aorta: factors influencing survival and neurologic outcome in 413 patients. J Thorac Cardiovasc Surg 2002;124:1080-1086 https://doi.org/10.1067/mtc.2002.124994
  10. Kazui T, Washiyama N, Muhammad BA, et al. Total arch replacement using aortic arch branched grafts with the aid of antegrade selective cerebral perfusion. Ann Thorac Surg 2000;70:3-9 https://doi.org/10.1016/S0003-4975(00)01535-6
  11. Kazui T, Yamashita K, Washiyama N, et al. Aortic arch replacement using selective cerebral perfusion. Ann Thorac Surg 2007;83:s796-s798 https://doi.org/10.1016/j.athoracsur.2006.10.082
  12. Hagl C, Khaladj N, Karck M, et al. Hypothermic circulatory arrest during ascending and aortic arch surgery: the theoretical impact of different cerebral perfusion techniques and other methods of cerebral protection. Eur J Cardiothorac Surg 2003;24:371-378 https://doi.org/10.1016/S1010-7940(03)00337-3
  13. Okita Y, Minatoya K, Tagusari O, Ando M, Nagatsuka K, Kitamura S. Prospective comparative study of brain protection in total arch replacement: deep hypothermic circulatory arrest with retrograde cerebral perfusion or selective antegrade cerebral perfusion. Ann Thorac Surg 2001;72:72-79 https://doi.org/10.1016/S0003-4975(01)02671-6
  14. Matalanis G, Hata M, Buxton BF. A retrospective comparative study of deep hypothermic circulatory arrest, retrograde, and antegrade cerebral perfusion in aortic arch surgery. Ann Thorac Cardiovasc Surg 2003;9:174-179
  15. Di Eusanio M, Tan ME, Schepens MA, et al. Surgery for acute type A dissection using antegrade selective cerebral perfusion: experience with 122 patients. Ann Thorac Surg 2003;75:514-519 https://doi.org/10.1016/S0003-4975(02)04345-X
  16. Sinatra R, Melina G, Pulitani I, Fiorani B, Ruvolo G, Marino B. Emergency operation for acute type A aortic dissection: neurologic complications and early mortality. Ann Thorac Surg 2001;71:33-38 https://doi.org/10.1016/S0003-4975(00)01824-5
  17. Wong CH, Bonser RS. Does retrograde cerebral perfusion affect risk factors for stroke and mortality after hypothermic circulatory arrest? Ann Thorac Surg 1999;67:1900-1903 https://doi.org/10.1016/S0003-4975(99)00434-8
  18. Svensson LG, Crawford ES, Hess KR, et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg 1993;106:19-31