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PID Type Iterative Learning Control with Optimal Gains

Ali Madady

Abstract: Iterative learning control (ILC) is a simple and effective method for the control of
systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task
to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and
derivative) type ILC update law for control discrete-time single input single-output (SISO) linear
time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled
system in current cycle is modified by applying the PID strategy on the error achieved between
the system output and the desired trajectory in a last previous iteration. The convergence of the
presented scheme is analyzed and its convergence condition is obtained in terms of the PID
coefficients. An optimal design method is proposed to determine the PID coefficients. It is also
shown that under some given conditions, this optimal iterative learning controller can guarantee
the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of
the proposed technique.

Keywords: Iterative learning control, monotonic convergence, optimal design, PID type ILC.

1. INTRODUCTION

Iterative learning control (ILC) is a technique to
control the systems doing a defined task repetitively
and periodically in a limited and constant time
interval. Examples of such systems are robot
manipulators that are required to repeat a given task
with high precision, chemical batch processes or,
more generally, the class of tracking systems.
Motivated by human learning, the basic idea behind
iterative learning control is to use information from
the previous executions of the task in order to improve
the performance from trial to trial in the sense that
tracking error is sequentially reduced. Thus, the
principle of ILCS is that, during the execution of
control algorithm in the jth iteration, some data as

errors are recorded. These are used by the learning
algorithm in the execution j+1 for improving the

control inputs and progressively reducing the output
errors and increasing the performance of close loop
system. Finally after a number of repeated trials, the
system should obtain an appropriate control input, so
that this input produces the desired output.

Since the iterative learning control concept was
proposed [1] (widely credited to Arimoto), a very
large number of approaches have been considered.
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Detailed literature reviews and recent developmerits
on ILC research can be found in [2-4]. Early research
efforts on ILC schemes were mainly on their analysis,
without explicit design or synthesis procedures.
However, the convergence conditions found in the
literature are typically not sufficient for actual ILC
applications. Therefore, in recent years increasing
efforts have been made on the design issue of ILC.
There are some efforts in [5,6] to use the parametric
optimization approach to design the ILC algorithms.' A
novel model-based method was presented in [7], so
that ILC based on a quadratic performance criteribn
was revisited and generalized for time-varying linear
constrained systems with deterministic, stochastic
disturbances and noises. The robust optimal design
problem and convergence properties analysis of
iterative learning control approaches are discusses in
[8]. The LMI approach was studied for analysis and
controller design for discrete linear repetitive systems
in [9]. A new control framework for batch and
repetitive processes was proposed in [10]. The
presented framework provided a pertinent means to
incorporate RFC (real-time feedback control) into ILC
so that the performance of ILC was virtually separated
from the effects of real-time disturbances. In [11] a
model reference adaptive ILC strategy was presented
for continuous time single-input single-output linear
time-invariant systems with unknown parameters,
performing repetitive tasks. A 2D (2-dimensional)
systems theory based technique was offered in [12].
The problem of decentralized iterative learning
control for a class of large scale interconnected
dynamical systems was considered in [13]. An
overview of the ILC technique, which can be used to
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improve tracking control performance in batch
processes, was given by [14].

Despite the continual advances in control theory,
PID (proportional plus integral and derivative)
controller is still the most commonly used controller
in the process control industry [15,16]. This is mainly
due to its noticeable effectiveness, simple structure
and its robustness. Hence, we are motivated to use the
PID strategy in designing the iterative learning control
schemes. For this purpose some efforts are done to use
the PID type control approaches in iterative learning.

The monotonic convergence property of P-type
iterative learning controller was studied [17]. In[18] a
P-type ILC was designed for a class of discrete-time
linear system, which guarantees the monotonic
convergence. A P-type iterative learning control for
systems that contain resonance was studied in [19]. In
[20] a PID-type ILC algorithm was presented that has
robustness property against initial state errors. The
question "what's the use of the error integral in ILC
updating law?" is answered in [21], through analysis
and illustrations, both simulation and extreme cases
studies, it is shown that the role of the tracking error
integral term (I-component) in ILC updating scheme
is helpful in achieving a monotonic convergence. In
[22] a PD- type ILC was given for the trajectory
tracking of a pneumatic X-Y table, experimental
results show the under the disturbances, the PD- type
ILC controller is superior to the P- type one and can
effectively control the system to track the given
trajectory. The PD- type ILC design of a class of
affine nonlinear time-delayed systems with external
disturbances was considered in [23], the simulation
examples show the effectiveness of proposed scheme.
Also another PID type ILC can be found in [24-30].

From above literature reviews, one can summarize
the specific advantage role of each of PID modes in
the ILC action as follows:

The P-component has a stabilizer role in the ILC
system and causes monotonic convergence; the I-
component rejects the effect of non-zero initial errors
and increases the convergence rate, while D-term can
reduce the effect of disturbance inputs.

For above merits of each of PID components in the
[LC action, the PID controller is a popular scheme in
the designing of ILCS. Hence, presenting any new

PID type controller in ILC domain is a significant task.

The aim of this paper is presentation a new PID
type iterative learning method, which causes the
monotonic convergence. The paper is organized as
follows. Section 2 defines the problem. In Section 3,
the defined problem is solved and the convergence of
its solution procedure is analyzed. Section 4 discusses
the monotonic convergence and an optimal manner is
presented for determination the controller parameters.
An illustrative simulation test example is given in
section 5. Finally Section 6 concludes the paper.

2. PROBLEM FORMULATION

Let an operation, or trial, of the system to be
controlled be denoted by the subscript “ ;> and let

time during a given trial be denoted by “i,” where
i€[0,M]. Both i and ; are integers. Hence, the

underlying discrete-time, linear, time invariant plant
can be described by:
x;(i+1) = Ax; (i) + Bu (i)
J’j(i) = ij(i)
x]' (0) =Xy
i=01.,M j=0,1,..,

(M

where xeR”"is the state vector, ucR and yeR
are input and output of the system respectively. 4, B
and C are real-valued coefficients with appropriate
dimensions. Also x, is the system initial condition.

We define the problem of this paper as follows.

Consider (1) and make the following reasonable
assumptions:

A1) The system initial condition x; is unknown.

A2) The scalar CB is nonzero.

A3) A desired output trajectory y,(i) is given.

Utilizing the PID strategy, determine the control
input sequence of system (1), such that with
increasing the number of repetition the error between
v, () and y,;(i) become small as possible so that

the following tracking can be established:

lim (y;()—y;(D)=0 for i=12,...M. )
j—w

Comment 1: The assumption (A2) is a standard
assumption in ILC design which guarantees the
existence of the learning gains. This is not really a
restriction, because it can be satisfied by choosing
proper sampling period in discretizing the continuous
-time systems.

3. PROBLEM SOLUTION METHOD

3.1. PID type iterative learning contro}
We consider the following updating law to
determine the input of system (1):

uj () =u; (D) + Au iy (i)

3)
i=0,1,.,M—-1,j=0,1..,

where Au;.;(i) is a modifier term.

Here, according to PID strategy Au j+1() is chosen

as follows:
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i+l
Auj () =kpe;(i+1)+k; D e (m)
m=1 4)
+hp (e,G+1)=e; (1)),
where
e (1) =ya()—y,;(i) for 1<i<M

and e;(0)20 ®)

and kp, k;, and kp, are real constant gains (coefficients),
we call them proportional, integration and derivative
learning gains respectively.

According to the proposed control law, modifying
term Awu;, (i) is formed from summation of three
expressions:

1) Proportional expression:

The value kpej(z’ +1) that is proportional value of

the error in time i+1 from iteration j.

2) Summed (integral) expression:

i+l
The value %, Z e;(m) that is proportional of the
m=1
summed errors from time 1 up to time /i+1 in
iteration J.

3) Differential expression:

The value kp (ej(i+1)—ej(i)) that is proportion
to the difference of error in two sequential time i
and i+1.

Now the problem is to determine the gains 4p,

k; and kp so that the (2) can be satisfied.

3.2. Convergence analysis
From (1) the following relation is obtained easily:

Y()=GU(j)+Gyxy j=0,1,..., (6)

where U(j) and Y(j) are input and output vectors
respectively in iteration j, and are as follows:

where

g =CA*'B for k=12,.,M. 9)

The elements of G are the standard Markov
parameters of the system (1), and also these
parameters can be extracted using the impulse
response of system.

From (6) we get:

YG+D)=Y(H+GV() j=01,.., )]
where
VN =U+H-UQ). (11)

From (10), the error dynamic of open-loop system
is obtained as follows:

EG+D)=E()-GV(j) j=0,l,., (12)

where E(j) is the error vector in iteration j and it
is defined below:

T
E()=Y;~Y())=| ¢;(1) ;(2) -+ e;(M)] -
T
Yo =34 522 ya00)]
By using relations (3) and (4) we have:
i+1
U () =u; () +kpe, (i+1)+k; Y e (m)
m=1
+kp(e;(i+1)—e; (D)), (14)
0<i<M-1.

Utilizing the definitions of ¥{j) and E(j), which are
given respectively by (11) and (13), we can write the
set of relations (14) as following compact form:

V() ={(kp +kp)l +k;Fy ~kpF} E(j)

15
for j=0,1,..., (15

[eRMM js identity matrix and F,

Fy e R™M  are defined as follows:

where

T
UM =[u;0) u,() - w;(M-D], -
. T
YN =y, y;@ - y;(0]
where T denotes the Transpose.
Also, G and Gy are following matrices:
fg O 0 0] C4
£2 &i 0 0 c4?
G=1g5 & & 0, G=|ca |
| 8 8M-1 Em-2 &1 caM

®)

1 0 0 - 0 0] (00 0 - 0 0]

110 - 00 1 0 0
111 0 0 01 0 0 0
Fi:.. ...,F2=..
111 1o 1 00
11 o1y 10 0 0 1 0]
(16)

Substituting M) from (15) into (12) yields:

E(j+D)=GE())

i=0,1,..,

(’17)
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where G, is a matrix given by:
GC:I_(kP +kD)G_k1GFi +kDGF2. (18)

The relation (17) is the error dynamic of closed-
loop system and it determines the variation of the
error vector £(j). Therefore to achieve (2) is depended
to G, and we achieve to this goal by appropriate
selection of the gains kp, k; and kp.

For analyzing the convergence of the obtained
ILCS (iterative learning control system), a definition
and a Theorem are presented.

Definition 1: The proposed ILCS is said to be
convergent, if for any £(0), that is for any initial input
uo(i), it generates an input sequence u,(i) for system
(1), such that (2) holds, meaning:

lim E(j)=0. (19)

Jj—o

Theorem: The presented ILCS is convergent if and
only if the coefficients kp, k; and kp are chosen
in the following interval:

|- g (kp +k; +kp)|<1. (20)

Proof: We define the operator ¥ from space

RM to space RMM s follows:
[ a 0 0 ... 0]
9
a, a 0
)
Va=| 7 [¥Y(a)=| a3 a a 0.
ay
Loy Oyt au-2 - ap

21
Thus the operator ¥ produces a low triangular
Toeplitz matrix from vector a. We define this

operator because that matrices /, G, F and F;,
which form G, according to (18), are kind of low
triangular Toeplitz and we have:

I=¥(a), =¥ (B), F,=¥(y), G=Y(g) (22)

where «,f.,y,g¢ R are as follows:

T

a=[1 0 0 0 — of,p=[1 11..1,

y=[0 1 00

(23)

It is easy to show that the operator ‘¥ has two
following properties:

1) This operator is linear, that is for any two

arbitrary vectors a,be R and two arbitrary scalars

¢, € R we have:

O]Ta g=[g1 & g3~~-gM]T-

Y(cqa+cyb)=c¥(a)+c, ¥ (b). (24)

2) If the multiplication © between two vectors

a=[a; ay---ay) and b=[b by--- by, is defined
as follows:
[ aiby |
a2b1 + a1b2
Cl3b1 + a2b2 + a1b3
a®b=| < , 25
Z amb1+l—m ( )
m=1
M
Z ambM+l—m
L m=l i
then we will have:
Y(a O b)=Y(a)¥(b). (26)

Therefore according to these properties and (22),
from (18) matrix G, can be written as the following
form

G, =Y¥(a)-(kp +kp)¥(g)
—k Y (@Y (B)+kp¥ ()Y ()
=Y¥(a)—(kp +kp)¥(g)
—k¥(g© B)+kp¥(gOy)
=¥(a—(kp+kp)g—k; (8O P)+kp(g @)
or
G, =¥(g,), @7)
where

ge=a—(kp+kp)g—k(gOp)+kp(gOy). (28)

Using above relation, vector g, is calculated as
follows:

r T
gc:_gcl 8c2 &e3 v ch:|

1-gkp —gk; — gikp

2
~gokp — (. 8k — (g2 — g)kp

i=1

3
= —gskp - Qg — (g3 - g2)kp

i=1

(29)

M
—gukp — Q. gk; — (841 — grr-1 kD
P

Considering the definition of ¥, from (27) we
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conclude that G, is a low triangular Toeplitz matrix

which is formed by g,., Thus:

- -

8l 0 0 w0
&2 &cl 0 0 0

G - g:cs 82 B 0
8e(M-1) 8e(M-2) &e(M-3) g1 0
| &M Ee(Mm-1)  BeMm-2) " 8c2 8l

(30)
Considering the low triangular form of G,, leads
to the following characteristic polynomial for it:

Ag, (W) =det(Al-G,) = (A-g ).

The dynamical equation (17) results that the
necessary and sufficient condition for converging the
presented iterative learning control system is that all
eigenvalues of G. must lie into the unit circle. That is:

|gcl|<1. 3D

The above condition is equivalent to (20). O

Comment 2: According to assumption (A2) in the
definition of our problem in section 2, since the scalar
J<d) 2CB is nonzero we can find numerous real

numbers for kp, k; and kp which they satisfy

inequality (20).

4. MONOTONIC CONVERGENCE ANALYSIS
AND OPTIMUM SELCTION OF THE
CONTROLLER PARAMETERS

4.1. Monotonic convergence

The monotonic convergence that means the better
and better operation from trial to trial is defined as
follows:

Definition 2: The proposed ILCS is said to be
monotonic convergent, if for any E(0), the following
condition holds:

JEG+D|, <|EG), if E()#0,
lEG+D], =|EW), if EG)=0, (32)
for A=12,00 and ;=0,1,2,...,

where | | , denotes the A -norm.

In the previous section we obtained the necessary
and sufficient condition for the converging of
presented ILCS. But this condition doesn’t guarantee
the convergence be monotonic. For monotonic
convergence the following Lemma is presented:

Lemma: The presented ILCS has monotonic
convergence if:

Je., <1. (33)

Proof: By taking of norm of two sides of (17), we
get:
[EG+D; 1G], 1EG,
for A=1,2,00 and ;j=0,1,....

Thus for monotonic convergence, it is sufficient we
have:

1G], <1 for 2=1,2,c0. (34)

But analyzing to confirm the above condition is not
easy. Hence, we use the especial form of G. and

extract a sufficient condition for holding (34). Since

G, is a low triangular Toeplitz matrix which is

produced by g, itis easy to show:
el =16, =lech- (35)
On the other hand we have:
G = Amex (G G ), (36)

where A, () indicates the maximum eigenvalue.

In the reference [31] has been shown that for evéry
symmetrical matrix [' we have:

max (T) < [T, - (37)

Therefore (36) and (37) result:

IG.IE = Amax (61 6. )< |5 G| <|6Z] )
2
=(le.l,)
or
el <[Ccl) (38)

Considering (35) and (38), we conclude that
||gc||1 <1 is a sufficient condition for (34), and thus

for monotonic convergence of the presented ILCS
from view point of three norms A =1,2, 0. G

Comment 3: According to the above Lemma it is
better if we can select suitable values for gains kp,
k; and kp so that the value of “gc“1 gets as
possible as small. Using nonlinear numerical
programming methods (such as optimization toolbox
of MATLAB), one can determine kp, k; and kj

so that ”gC“l be minimize. But for two following
reasons instead of minimizing "gc’“1’ here we

minimize a upper bound of it: 1
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1) Minimizing of ” g. ||1 doesn’t give a closed form

and explicit formula for parameters kp, k; and kp,
whereas, here we are fond to achieve a closed form
formula for these parameters.

2) A critical and important problem in numerical
optimization methods is the selection of initial values
for variables. Hence, we can use the obtained values
for kp, k; and kp from minimizing of upper bound of
”gc”1 as initial values in numerical minimizing of

”g0”1 .

4.2. Minimization of a “ gC”1 upper bound

Since g, has M components, it is easy to see that:

lecl, <M g, (39)

Therefore we determine kp, k; and kp, so that the
following index function be minimum:

2
p=lel; =2 (40)
Using (29), we can write g, as follows:
g, =a—-HK, A1)

where « is introduced by (23) and K eR?,

H e RM3 are defined below:

&1 &1 &i
kp &2 81+t& & &
K=k ,H=|2g  g+8&+g; 2 -8
kD . : :
18 &1 t8&2+ " 8m &m—&m-]
(42)
Thus index p gets into form:
p=1-2a"HK + KTHT HK. (43)
Gradient (derivation) of p respect to K is as
follows:
VP o o HTa+ 20T HK. (44)
VK
. . Vp . .
Solving equation CT 0 yields the optimum
value for K :
1
K =HTHY '"HTa=g(HTH) 1] (45)

1

Optimal value for K exists if matrix H TH be
invertible. This matrix is invertible if and only if H

has full column rank. Since H'H is a symmetrical
3x3 matrix, therefore its inverse (if exists) will be
symmetrical, which is shown as follows:

h
HTHY ' =\ hy b k| (46)
hy hs hg

Using (45) and (46) we obtain:

kp =g (hy + My + hy)
kj = gy(hy +hy +hs) (47)
kp = g (hy + hs + hg).

From (44) we get:
2
Vp g =2HTH. (48)
VK

If K exists that is H has full column rank, then
the symmetrical matrix H TH will be positive
definite. So K~
minimum.

Substituting K~ from (45) into (43) yields the
global minimum of p as follows:

causes index p gets global

p =l-a HHTHY'H

(49)
= 1—g{ (b +2hy + 20y + by + 25 + hg).

If p* <M_1, then from (39) and (40) we have
”gC”l <1, that is the following condition is a

sufficient condition for monotonic convergence:
* -1
p <M. (50)

Satisfying the above condition depends on
parameters of the system (1), that is {g;,85,....&p}

and M, or more precise to the Markov parameters
of the system and duration of iteration. For any given

system, we can calculate the value of p* using (49).

If the calculated value is less than M~', we can
ensure that the proposed optimal approach to control
the system causes monotonic convergence. Otherwise
we cannot judge about monotonic convergence. For
example suppose a repetitive system with following
coefficient matrices:

A:R‘j 0?8}, Bzm, c=[2 -04]
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and duration of iteration M =100.
For this system is calculated:

o =0.004427.

It shows that p* <M1'=0.01, hence controlling

this system using the presented method certainly leads
to monotonic convergence.
Comment 4: from (47) we have:

k; +k; +k£ =gl +2hy +2m + hy +2hs + k),
therefore

1= g (kp +ky +hp)
=1-gf (I +2hy + 2y + hy +2hs + hg).

The above term is equal with p*, which is given
by (49). Since according to (40) index p is a
nonnegative function, we conclude its global
minimum that is p* is also nonnegative. On the
other hand H has full column rank (the existence
condition of K*) and hence the symmetrical matrix
(HTH)_1 is positive definite. Also « that is
defined by (23) is a nonzero vector. Thus,
aTH(HTH)"lHTa is a positive number and
consequently from (49) it is resulted that p* <1.
Thus we have:

0<1-g(kp +k; +kp)<l.

Hence, the computed optimal values for controller
parameters satisfy the constraint (20), which is needed
for convergence of presented ILCS.

5. SIMULATION RESULTS

In this section, an example is given to demonstrate
the effectiveness of the proposed method. As Fig. 1,
we consider a DC motor which its armature is driven
by a constant current source but its field winding
current is variable. So that the motor rotational angle
control is done by varying the voltage of the source
connected to the field winding. The motor rotates a
mechanical load. In this situation the state space
equations of the motor are as follows [32]:

x(t) = Ax(t) + By (D),
y(#)y=Cx(t), 20,

where

50 =[i,0) o) 60] . yo=60),

l I,=Constant

Mechanical
load

J,f |

B R ] r ]
L 0 1
I et A S I ,C:[o 0 ;1},
] i
0 1 0 0
L ] L i

and Ry, L, are the field winding resistance and

inductance respectively, £,

» 1S the motor torque ratio,

J and f are the mechanical load inertia momentum
and friction ratio respectively. Also ve(t), irp(r) are
respectively the field winding source voltage and
current, ®(¢t) and 6&(t) are the motor shaft

rotational speed and angle respectively.
We purpose to determine the input voltage of motor
(vs(1)), so that the motor output y(r) periodically

follows the desired given signal y,(¢) in time
interval [O,If], such that by increasing the

iterations number, error between y(r) and y,(f)

vanishes. To determine the input voltage of motor, we
use the proposed method in this paper. For this reason
the state equations of the motor should be written as
discrete-time form. We discretize the motor state
equations by choosing the sampling period
T=001sec and the following amounts for

parameters:
= - _ N
R, =20Q), L, =1H, km—IOOTm,

f=05Nms y_pNme g,

rad ° rad ?

By considering variable ; as the iteration number
the obtained discrete state equations are as follows:

y; () =Cpx;(i)
i=0,1,..,1200, j=0,1,...,

where the coefficient matrices are as below:
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08187 0 0
Ap=| 04526 09975 0,
| 0.0023  0.0100 1
[ o
Bp=|0.0197, Cp=[0 0 1]
0.0211

The desired output trajectory, which is shown in
Fig. 2, is chosen as follows:

yd(r)zlo(nsin(z—”t—ﬁ)] 0<r<t,,
2
ty =12 sec

or
27 0w
)=10} 1 +sin(—i-—
ya(d) ( (M 2))
1sisM,M=%=1200.

Motor input voltage at first iteration (say ;j=0),

that the controller hasn’t any previous experience, is
selected equal to 10. Simulation is done in two
following cases.

Case 1: Non optimum selection of gains kp, &;

and kp.
In this situation the parameters kp, k; and kp is

selected so that just the convergence condition (20) is
satisfied. According to the motor state equations (in
discrete form), g; is obtained as:

g =CpBp =0.0211.

Then using (20) convergence condition for the
obtained iterative learning control system will be:

20F

18f

18

14}

12F

10

=]

0 200 400 600 800 1000 1200
Time (i)

Fig. 2. The desired output trajectory y,(i).

200 400 600 800 1000 1200
Time (i)

Fig. 3. The motor output (rotational angle) at the
iterations j =10,20,30,40,50 in case 1.

10000

9000

8000

7000}

6000

5000

40001

3000

20001

1000

=]

0 10 20 30 40 50
Iteration Number (j)

Fig. 4. The norm 2 of error vector with respect to the
iteration number j in case 1.

O0<kp+k; +kp <94.7867.
We select
kp=-0.2,k; =0.0005, k5, =20.

This selection satisfies the convergence condition.

Simulation results are shown in Figs. 3 and 4.
These results indicate that by increasing the iteration
number, the output of the motor converges to the
given desired trajectory. But Fig. 4 shows obviously
that the convergence at this situation is not monotonic.

Case 2: Optimum selection of gains kp, k; and
kp.

In this case we select the coefficients kp, k; and
kp according to the (47) as follows:

kp =—0.0988 , kj =1.2548x107* , k}, =47.1736.
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1% 200 400 300 500 1000 1200
Time (i)
Fig. 5. The motor output (rotational angle) at the
iterations j = 5,7,12 in case 2.

4250
400

400 ”E (i )”2

3501

3001

250

200+

150F

100

sof

o 5 10 15 20
Iteration Number (j)

Fig. 6. The norm 2 of error vector with respect to the

iteration number j in case 2.

The simulation results have been shown in Figs. 5
and 6. As Fig. 5 shows, by increasing the iteration
number, the motor rotational angle quickly is
converged to the given desired output trajectory and
convergence rate is much more than previous case.
Fig. 6 indicates that the convergence in this situation
is monotonic. Therefore optimum selection of kp, &;

and kp using (47), not only increases the convergence
rate but also causes the monotonic convergence.

6. CONCLUSION

In this paper, we proposed a straightforward
extension of standard PID scheme to linear repetitive
discrete time systems in order to improve the transient
tracking performance through iterative learning. The
convergence of the presented method was analyzed
and its convergence condition achieved in terms of
PID gains. Then we focus on the monotonic
convergence of the presented learning process and an

optimal design method for PID-type ILC scheme is
proposed. A sufficient condition is obtained in terms
of system Markov parameters for guarantee the using
of proposed optimal PID approach to control the
system causes the monotonic convergence. An
illustrative simulation test example confirmed the
effectiveness of the presented approach. However, the
extending the proposed method to control the multi
input and multi output (MIMO) repetitive systems
merit further research.
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