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WEIGHTED ENDPOINT INEQUALITIES FOR
MULTILINEAR MARCINKIEWICZ INTEGRAL OPERATOR

Yu WENXIN AND LANZHE LIU

ABSTRACT. We prove a sharp inequality for some multilinear operator
related to Marcinkiewicz integral operator. As application, we obtain the
weighted norm inequality and Llog L type estimate for the multilinear
operator.

1. Introduction and results

Suppose that $"~1 is the unit sphere of R” (n > 2) equipped with normalized
Lebesgue measure do = do(z’). Let £ be homogeneous of degree zero and
satisfy the following two conditions:

(i) Q(z)is continuous on S™~! and satisfies the Lip., condition on 5"~ (0 <
v <1),ie,
Q") - Q)| < Mg’ -y, 2’y € S"T
(il) fgno2 z")da' = 0.
Let m be a positive integer and A be a function on R™. We denote I'{z) =

{(y;t) € R¥™ : |z — y| < t} and the characteristic of I'(z) by XT(z)- The
multilinear Marcinkiewicz integral operator is defined by

1/2
d
WA () = [ /] DR
wh
?re FA(f)(l' y) =/ Q(y — Z) Rm+1(A§m7z)f(Z)dz
! 7 y—zl<e [y — 2"z — 2™
and

Runs1(Ai,y) = Ale) = Y DAz~ y)"

la|<m
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Set

Fif)(y) = /I Uy —2) rge.

—z)<t ly — 2|1

1/2
- ( /). |Ft(f)(y>|2f#§) ,

which is the Marcinkiewicz integral operator (see [16]).
Let H be the Hilbert space

aydt\
= . = 2_y
H={h: |l (//Riﬂfh(y,t)l tn+3)

Then for each fixed z,y € R", FA(f)(x,y) and F;(f)(z) may be viewed as a
mapping from the spaces of measurable functions to H, and it is clear that

#5(N)@) = ||xr@ FA () y)|| and ps(F)(@) = ||xr@ F(F) )| -

Note that when m = 0, u# is just the commutator of Marcinkiewicz integral
operator (see [10], [16]), while when m > 0, it is a non-trivial generalization of
the commutator. It is well known that multilinear operators are of great interest
in harmonic analysis and have been widely studied by many authors (see [1-5]).
In [8], authors establish a variant sharp estimate for some multilinear singular
integral operators. The main purpose of this paper is to establish a sharp
estimate for the multilinear Marcinkiewicz operator, then the weighted norm
inequalities and the L log L type endpoint estimate for the multilinear operator
are obtained by using the sharp estimate. We point out that some of our ideas
come from [8] and [11]. First, let us introduce some notations (see [7], [11],
[13]).

For any locally integrable function f, the sharp function of f is defined by

#
[ (z) = sup |Q|/|f(y - foldy,

where, and in what follows, @ will denote a cube with sides parallel to the axes,
and fo =1Q|™" [, f(z)dz. 1t is well-known that

We also define that

F(r) — arn inf L _
f7(x) 228328 |Ql/QIf(y) cldy.

We say that f belongs to BMO(R") if f# belongs to L>(R™). For 0 < r < 00,
we denote f# by

FE(@) = [N @)

Let M be the Hardy-Littlewood maximal operator, that is,

1
Mf(z) = SU 1] /Q |f(y)|dy,
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we write that My f = (M(f*))'/* for k € N, we denote by M* the operator M
iterated k times, i.e., M f(z) = M f(z) and

MFEf(z) = M(M*1f)(z) when k> 2.

Let B be a Young function and B be the complementary associated to B, we
denote that, for a function f

£ =it 2> 0: 0 [ LWy <1

and the maximal function by

Mpf(x) = sup ||fl|B.q;
r€Q

The main Young function to be used in this paper is B(t) = t(1+log™ t) and its
complementary B(t) = expt, the corresponding maximal denoted by M7, log L
and Meyxp, .- We have the generalized Holder’s inequality

l_cljl/c;lf(y)g(y)ldyﬁ IIfllB.0llgll5.0

and the following inequality (in fact they are equivalent), for any z € R",
MpigLf(z) < CM*f(z)
and the following inequalities, for all cubes @ and any b € BMO(R")
1o = bgllexp .o < CllbllBao and [byrrig — baq| < 2k[bl[ B0

We denote the Muckenhoupt weights by A, for 1 <p < oo (see [7]).
Now we state the results in this paper as follows.

Theorem 1. Let D*A € BMO(R") for all o with |o| = m. Then for any
0 < r < 1, there exists a constant C > 0 such that for any f € C3°(R™) and
any x € R*,

HANEE) <C 3 1D Allparo M2 f(z).

|aj=m
Theorem 2. Let 1 < p < oo and D®*A € BMO(R") for all o with |o] = m,
w € A,. Then ug is bounded on LP(w), that is,
s (Dllzrw) <C > 11D AllsrollfllLew)-
|a|=m

Theorem 3. Let D*A € BMO(R"™) for all o with |a| = m, w € Ay. Then
there exists a constant C > 0 such that for each A > 0,

w({z € R": 4 (f)(z) > A})
<C Z ||DaA||BMo/ If—(;)—' (1 + log™ (@)) w(z)dz.

lor|l=m R
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As in [11], Theorem 2 and 3 follow from Theorem 1 and the boundedness of
ps with M. So we only need to prove Theorem 1.

2. Proof of theorems
We begin with some preliminary lemmas.

Lemma 1 (Kolmogorov, (7, p.485]). Let 0 < p < q < oo and for any measur-
able function f > 0. We define that

I llwra = i‘i%)‘l{x eR": f(z) > A}V,
Np,q(f) = S%PHfXEHLP/”XEHLM (1/r=1/p-1/q),

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

IFllwre < Npo(f) < (a/(q — )| fllwLa.

Lemma 2 ([3, p.448]). Let A be a function on R™ and D*A € LY(R") for all
o with |a| = m and some ¢ > n. Then

1/q
1 a3
|R(4;2,9)| < Clz —y[™ ) (m o )ID A(Z)|qdz> :
’ .Y

laj=m
where Q(z,y) is the cube centered at z and having side length 5+/n|z — y|.

Lemma 3 ([11, p.165]). Let w € A1. Then there exists a constant C > 0 such
that for any function f and for all X > 0,

w({y € R M21(4) > M) <O [ (Wl +1og" O WD)y

Lemma 4. Let 1 < p < 00 and D*A € BMO(R™) for all o with |a| = m,
1<r<oo,1/g=1/p—1/r. Then ug is bound from LP(R™) to LI(R"), that
18,
68 (Hllze < C Y [ID*Allgmol| s
|aj=m
Proof. By Minkowski’s inequality and note that |z —z| < 2¢, [y —z| > |z — 2| —
|z —y|>|r — 2| —t when |z —y| < ¢, |y — 2| < t, we have

u5(f)(@)

1/2
12y — )| Rsr (452, 2)|| £ (2)] ) dydt
: /R" [/ /Iw—yISt ( ly — 2|~z — z|™ ) xe() 1) t”+3} dz

1/2
, t~ n—3
<o Bz fE) [// xr() (8, ) dydt} i
Jo—

R™ |z~ z|™ i<t (lz — 2| = 3t)2n=2
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1/2
dz

Rois (A2, )7 [ [ dt
SC e e [/‘I_ZW (o — 2] - -2

IRm+1(A§ T y)l

<c Tl ()

R [T —

thus, the lemma follows from [4], [5]. O
We first prove Theorem 1.

Proof of Theorem 1. Fix & € R™. Let Q = Q(zo,!) be a cube centered at zg
and having side length [ such that # € Q. It suffices to prove for f € C§°(R")
and some constant Cy, the following inequality holds:

1/r
(& | i) ~Gra)  <OMf(@)

Let Q = 5\/nQ and A(z) = A(z) — 3 %(DO‘A) z%, then R,,.1(4;2,y) =

|a|=m
Rmni1(4;2,y) and D*A = D*A—(D*A) 5 for |a| = m. We write, for fi = fxg
and f2 = fX]Rn\Q’

Ry = [ WD I8 ),

—zl<e [y — 2771z — 2™
[ el
y—zl<t 1Y — 2] lz — 2|

+/ Q(y_z) Rm(A7x7z)f1(Z)dZ
ly—

z;<t ly - ZI"‘1 I»’v - ZI’”

) (—2)*
|a|—-m /y z|<t ly—zln—l |z — z|mD A(2) f1(2)dz,

then
pE(9)(@) = ud (£2)(20)
= [l FAD @ )l = lxra B ) @0, )|

Xr(z)Fi (E(ﬁ_ﬁ%ﬁfl) W)+ Z &1—! '

Ja]=m

+ |xr@ FAD @) = oo B (F2)(@0,9)]|
= I(z) + II(z) + I11(x),

IA

o (= o)l




6 YU WENXIN AND LANZHE LIU

thus,

(|75| /Q {u’s“(f)(x) _ Mé(h)(%)'rdx)l/r

= I(%/@ I(x)”dx)l/rJr (%/@H(w)%x)l/rqt (%/Qm(x)"dm)w
=I+1I+1I1

Now, let us estimate I, II, and III, respectively. First, for x € Q and y € Q,
using Lemma 2, we get

Rn(&iz,y) < Cle—yI™ Y [ID*Allauo,

|ae]=m

thus, by Lemma 1 and the weak type (1,1) of ug (see [6], [14]), we obtain
I<C Z “DaA“BMOlQI—l ”/J'S(fl)XQHLT

g lIxellzr/a-»

<C Y ID*AllsmolQ llus(f1)llwze
|al=m

<C 3 ID*Allnol0)™ /Q @y <C 3 1ID° AllsaoM(F)(@)
|a|=m la|=m

For [1I, similar to the proof of I, we get

eo - o ls@ Ahxallr

<0 2 T e

<C Y 1R lus(D*Af)llwis
Jal=m

<C Y QI [ ID*AW)IIf (y)ldy
|a|=m /Q

<C Z ||DaA||expL,QHf”LlogL,Q
|a|=m

<C Z |D*Al|lsaro Mriog £ F(Z)
|la)]=m

<C Y |ID*AllpmoM?f(3);
|a|=m

To estimate 111, we write

xr(z) (¥, HFA(fo) (e, y) - XT(zo) (%5 8 FA(f2)(@o, )

1 1 :, Q(y - Z)Rm(A; Z, Z)f2(2)

= Xr yvt [ - — dz
/Iy—2|§t (m)( ) |z — z|™ lzo — 2|™ ly — 2|1
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XT(x) ya) ( —Z)fg(z)
+/y z|<t

|zo — 2|y — 2|

(R (A; 2, 2) — R (A; x0, 2)]dz

Uy ~ 2)Rm(A; 20, 2)
+/|y_z}gt(><r<z>(y, ) =X ) R e S22
_ 1 Xr@) (® 1) (@ = 2)*  Xro) ¥, t)(zo — 2)*

Ialgm o /ly—zrst [ |z — 2™ lzg — 2|™

Qy — 2)D*A(z)

ly — 2|~

X

f2(2)dz

Note that |z — z| ~ |z — z| for z € Q and z € R” \ Q. By Lemma 3 and the
following inequality (see [15])

lbg, — ba,| < Clog(|Q2]/1Q1)IbllBMmo  for Q1 C Q2,

we know that, for z € Q and z € 28+1Q \ 2%Q,

|Bn(4;2,2)] < Cla —2|™ Y (ID*Allsro + [(D*A) g,y — (D*A)g))

lal=m

< Cklz — z|™ Z |1D*Allsmos;

lal=m

For 111, by the condition on € and similar to the proof of Lemma 4, we get

xol Az, z z)ldz
i e < & [ ( Lo e R, 152 )dw

1/n
<o Sl k[ e

k41 k T
la|=m 2 Q\2%Q l

< chqu 1D*Allsar0 Z 2k 5 Jog 1Nz
<C Y HD‘YAHBMo;kz—’“MU)(i)
< C::Z_: IID‘*AIIBMol\;(f)(i);
For 111, by the formula (see [3]):
Ru(A;2,2) — R (A; 20, 2) = R _181(DPA; 2, 20)(x — 2)P

Bl

|8l<m
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and Lemma 3, we have
|Rm(A; 2, 2) — Rm(A4; 0, 2)|
<C Y Yl —ao|™ Pl — 2| D*Allsumo

1Bl<m |a|=m

<C Y |ID*Alluolz — zollz — 2™,

|a|=m

thus, similar to the proof of Lemma 4

ﬁ / | I11)|dz

<, (/Rn\Q e !f(Z)Idz) iz
< 3 1D Alawo Z )y E’%mz)wz
< OlgmHD“AnBMo;z- lm 2)ldz

<C Y ID° Allmao M(f)(@)

|a|=m

For 1113, similar to the proof of Lemma 4, we obtain

I11||dz
o / 1115
// | f2(2)|| R (A; 20, 2)|
|Q| n |xo — z|™
) 1/2
Xr(z) (U DIXr@) (¥ ) = Xr(zo) (¥ 1)|° dydt
dzdzx
]Rn+1 |y — z|2n—2 tn+3

| f2(2)|| R (4; w0, 2))|
|Q| / /n |zo — 2|™

t)dyd t)dydt
// Xr(z)(y, t)dydt // Xr(z) ¥, )Zy i dzd:v
I'(x) |y - z|2n Zgnt3 T(zo) Iy - Z|2n gt
/ / | f2(2)|| R (4; 0, 2)|
|Q| n |zo — 2|™
1 1 dydt 12
: // 2 2n—2 z 3 dzdz
|lety—z|<t |z+y—z| nT ]xo-l-y—z| no2)gnt
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< |Q|//n | fa(z ||:Lf_ ;‘T;nﬂﬂo,zﬂ

1/2
. // fo = moldyds dzdx
lyl<t,joty—z|<t |T +y — z[F7lgn+3

. _ 1/2
[ (Aizo,2)| Jo—mol?

lzg — 2|™ |zg — z|"+1/2

IA

@ 1
C X D allswo 3 ket is [ iriae

|a|=m k=1

<C Y |ID*AllBuoM(f)(@);

la|]=m

For 1114, similar to the proof of ITI; and IIls, we get

H114]]
S OF i for (RS + (222805 ) 1D A(y) 1 fa2) a2
S O jajem Ziea 27 +2752) = [ £ ()| D*A(2) — (D 4) g ld=
< C¥jajm Liea K278+ 272) (1D All e 12261111 105 2,220+ 1D All B0 M (1) (@)
< C ¥ lajmm ka1 k(278 +278/2) || D A | prro ML og L(£)(E)
< C%aj=m |ID*AllBrro M?(f)(2).

Thus,
III<C Y ||D*AllBrmoM*(£) (%),
|al=m
This completes the proof of Theorem 1. O

From Theorem 1 and the weighted boundedness of g and M, we may obtain
the conclusion of Theorem 2.
From Theorem 1 and Lemma 3, we may obtain the conclusion of Theorem 3.

Acknowledgement. The author would like to express his gratitude to the
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