ON SUPER EDGE-MAGIC LABELING OF SOME GRAPHS

JI YEON PARK, JIN HYUK CHOI, AND JAE-HYEONG BAE

ABSTRACT. A graph G=(V,E) is called super edge-magic if there exists a one-to-one map λ from $V\cup E$ onto $\{1,2,3,\ldots,|V|+|E|\}$ such that $\lambda(V)=\{1,2,\ldots,|V|\}$ and $\lambda(x)+\lambda(xy)+\lambda(y)$ is constant for every edge xy. In this paper, we investigate whether some families of graphs are super edge-magic or not.

1. Introduction

Throughout this paper, we assume that all graphs are finite, simple and undirected. A graph G has vertex set V(G) and edge set E(G) and we let $|V(G)| = \nu$ and $|E(G)| = \epsilon$. A general reference theoretic notions is West [6].

Given a graph G, V(G) = V and E(G) = E. A labeling for a graph is a map that takes graph elements to numbers (usually positive or non-negative integers). Various authors have introduced labelings that generalize the idea of magic square.

Kotzig and Rosa [2] defined a magic labeling to be a total labeling on the vertices and edges in which the labels are the integers from 1 to |V(G)|+|E(G)|. The sum of labels on an edge and its two endpoints is constant. In 1996 Ringel and Llado [3] redefined this type of labeling as edge-magic. Also, Enomoto et al [1] have introduced the name super edge-magic for magic labelings in the sense of Kotzig and Rosa, with the added property that the ν vertices receive the smaller labels, $\{1, 2, \ldots, \nu\}$.

A one-to-one map λ from $V \cup E$ onto the integers $\{1,2,\ldots,\nu+\epsilon\}$ is an edge-magic labeling if there is a constant k so that for any edge xy, $\lambda(x)+\lambda(xy)+\lambda(y)=k$. The constant k is called the edge magic number for λ . An edge-magic labeling λ is called super edge-magic if $\lambda(V)=\{1,2,\ldots,\nu\}$ and $\lambda(E)=\{\nu+1,\nu+2,\ldots,\nu+\epsilon\}$. A graph G is called edge-magic (resp. super edge-magic) if there exists an edge-magic (resp. super edge-magic) labeling of G.

Received December 6, 2005; Revised September 12, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 05C78, 68R10, 90B18, 90C35.

Key words and phrases. edge magic labeling, super edge-magic graphs, magic number.

This research was supported by the Kyung Hee University Research Fund in 2005.(KHU-20051059).

Kotzig and Rosa [2] and Wallis et al [5] showed the edge-magicness for cycles C_n and some variants of C_n . Also, Enomoto et al [1] proved that a cycle C_n is super edge-magic if and only if n is odd.

In this paper, we also find super edge-magic variants of C_n . First of all, we show that an (n, 2)-kite is super edge-magic if n is even and that the converse is also true. Finally, we prove that the graph $K_2 \cup C_n$ is super edge-magic if n is even. It was motivated by Wallis [4] question to characterize edge-magic graphs.

2. Main results

We take some families of graphs to see whether or not they are super edgemagic. An (n, t)-kite is a cycle of length n with a t-edge path (the tail) attached to one vertex. In [5], Wallis et al. showed that (n, 1)-kite is edge-magic.

The following proposition shows that an (n, 2)-kite is super edge-magic if n is even and that the converse is also true.

Proposition 2.1. Let G = (n, 2)-kite. The graph G is super edge-magic if and only if n is even.

Proof. Let $v_0, v_1, \ldots, v_{n-1}, v_0$ be a vertex sequence of C_n , a vertex v is adjacent to v_0 and a vertex w is adjacent to v. Suppose there exists a super edge-magic labeling λ of G with the magic number k. Set $\lambda(v_0) = \alpha$ and $\lambda(w) = \beta$. Then

$$\begin{split} k(n+2) &= \sum_{xy \in E(G)} \{\lambda(x) + \lambda(xy) + \lambda(y)\} \\ &= 2\sum_{x \in V(G)} \lambda(x) + \lambda(v_0) - \lambda(w) + \sum_{xy \in E(G)} \lambda(xy) \\ &= \frac{(n+2)(5n+13)}{2} + \alpha - \beta. \end{split}$$

This implies that $k-\frac{\alpha-\beta}{n+2}=\frac{5n+13}{2}$ is a rational number that is not integer, since $0<\left|\frac{\alpha-\beta}{n+2}\right|<1$. Thus n must be an even. Let n=2m+2 for a nonnegative integer m. $V(G)=\{v_0,v_1,\ldots,v_{n-1},v,w\}$ and $E(G)=\{v_iv_{i+1}\mid 0\leq i\leq n-2\}\cup\{v_{n-1}v_0\}\cup\{v_0v\}\cup\{vw\}$. We define a labeling $\lambda:V\cup E\longrightarrow\{1,2,\ldots,4m+8\}$ as follows:

Case where m is odd.

$$\lambda(v_i) = \begin{cases} (m-i+1)/2 & \text{if } i = 0, 2, \dots, m-3, m-1\\ (3m-i+4)/2 & \text{if } i = 1, 3, \dots, m-2, m\\ (3m-i+3)/2 & \text{if } i = m+1, m+3, \dots, 2m\\ (5m-i+10)/2 & \text{if } i = m+2, m+4, \dots, 2m+1, \end{cases}$$

$$\lambda(v) = (3m+7)/2,$$

$$\lambda(w) = (3m+5)/2,$$

FIGURE 1. An illustration for the labeling given in the proof of Proposition 2.1.

$$\lambda(v_i v_{i+1}) = \begin{cases} 3m + i + 9 & \text{if } 0 \le i \le m - 1\\ 3m + 8 & \text{if } i = m\\ m + i + 5 & \text{if } m + 1 \le i \le 2m, \end{cases}$$
$$\lambda(v_{n-1} v_0) = 3m + 6,$$
$$\lambda(v_0 v) = 3m + 7,$$
$$\lambda(v w) = 2m + 5.$$

(See Figure 1 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m + 11.

Case where m is even.

$$\lambda(v_i) = \begin{cases} (m+i)/2 & \text{if } i=0,2,\ldots,m-2\\ (3m+i+9)/2 & \text{if } i=1,3,\ldots,m-1\\ m & \text{if } i=m+1\\ (m+i+2)/2 & \text{if } i=m,m+2,\ldots,2m\\ (i-m-1)/2 & \text{if } i=m+3,m+5,\ldots,2m-1\\ (3m+6)/2 & \text{if } i=2m+1, \end{cases}$$

$$\lambda(v) = (3m+8)/2,$$

$$\lambda(w) = (3m+4)/2,$$

$$\lambda(w) = (3m+4)/2,$$

$$\begin{cases} 3m-i+6 & \text{if } i=0,1,\ldots,m-2\\ 2m+6 & \text{if } i=m-1\\ 4m-i+10 & \text{if } i=m,m+1\\ 5m-i+10 & \text{if } i=m,m+1\\ 2m+7 & \text{if } i=2m, \end{cases}$$

$$\lambda(v_{n-1}v_0) = 3m+8,$$

$$\lambda(v_0v) = 3m+7,$$

$$\lambda(vw) = 2m+5.$$

(See Figure 2 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m + 11. Hence, the graph G is super edge-magic.

FIGURE 2. An illustration for the labeling given in the proof of Proposition 2.1.

A complete graph is a simple graph in which every pair of vertices forms an edge. We denote by K_n the complete graph with n vertices. Also, we denote by $K_2 \cup C_n$ the graph obtained from union of disjoint graphs K_2 and C_n . In [4], W. D. Wallis proved that $K_2 \cup C_3$ is not edge-magic, but $K_2 \cup C_4$ is edge-magic. Then Wallis [4] proposed the following problem: For which values of n, is $K_2 \cup C_n$ edge-magic?

The following theorem shows that $K_2 \cup C_n$ is super edge-magic if n is even $(n \neq 10)$.

Theorem 2.2. Let $G = K_2 \cup C_n$. The graph G is super edge-magic if n is even $(n \neq 10)$.

Proof. Let $v_0, v_1, \ldots, v_{n-1}, v_0$ be a vertex sequence of C_n and let u and w be the vertices of K_2 . Let n = 2m for a nonnegative integer m. $V(G) = \{v_0, v_1, \ldots, v_{n-1}, u, w\}$ and $E(G) = \{v_i v_{i+1} \mid 0 \le i \le n-2\} \cup \{v_{n-1} v_0\} \cup \{uw\}$. We define a labeling $\lambda : V \cup E \longrightarrow \{1, 2, \ldots, \nu + \epsilon\}$ as follows:

If n=4, then $\lambda(V(C_4))=(2,3,5,4)$ and $\lambda(V(K_2))=\{1,6\}$. Thus λ is a super edge-magic labeling of $K_2 \cup C_4$ with the edge magic number 16. Now, consider n > 6.

Case $m \equiv 0 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i = 0, 2, \dots, m-2\\ (i+1)/2 & \text{if } i = 1, 3, \dots, m-1\\ (3m+8)/2 & \text{if } i = m. \end{cases}$$

$$\lambda(v_i) = \left\{ \begin{array}{ll} (i+3)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+5)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+1)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 0 \pmod{6}, \end{array} \right.$$

FIGURE 3. An illustration for the labeling given in the proof of Theorem 2.2.

$$\lambda(u) = (m+2)/2,$$

$$\lambda(w) = (3m+4)/2,$$

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m-i+3 & \text{if } 0 \le i \le m-2, \\ 3m+2 & \text{if } i=m-1. \end{cases}$$

If $m \leq i \leq n-2$, then

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m + 2 - i & \text{if } i \equiv 1 \pmod{3} \\ 4m + 1 - i & \text{if } i \equiv 2 \pmod{3} \\ 4m - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0 v_{n-1}) = 3m + 4,$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 3 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m + 6.

Case $m \equiv 3 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i = 0, 2, \dots, m-1\\ (i+1)/2 & \text{if } i = 1, 3, \dots, m-2\\ (m+5)/2 & \text{if } i = m. \end{cases}$$

$$\lambda(v_i) = \begin{cases} (i+3)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+5)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+1)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 0 \pmod{6}, \end{cases}$$

$$\lambda(u) = (m+1)/2,$$

$$\lambda(w) = (3m+5)/2,$$

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m-i+3 & \text{if } 0 \leq i \leq m-2 \\ 3m+2 & \text{if } i = m-1. \end{cases}$$

FIGURE 4. An illustration for the labeling given in the proof of Theorem 2.2.

If $m \leq i \leq n-2$, then

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m + 2 - i & \text{if } i \equiv 1 \pmod{3} \\ 4m + 1 - i & \text{if } i \equiv 2 \pmod{3} \\ 4m - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0 v_{n-1}) = 3m + 4,$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 4 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m + 6.

Case $m \equiv 1 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i = 0, 2, \dots, m-1\\ (i+1)/2 & \text{if } i = 1, 3, \dots, m-2\\ (m+5)/2 & \text{if } i = m. \end{cases}$$

$$\lambda(v_i) = \begin{cases} (i+1)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+3)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+5)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 0 \pmod{6} \\ (m+3)/2 & \text{if } i \equiv m+2, \end{cases}$$

$$\lambda(u) = (m+1)/2,$$

$$\lambda(w) = (3m+5)/2,$$

$$\lambda(v_iv_{i+1}) = \begin{cases} 4m-i+3 & \text{if } 0 \le i \le m-2 \\ 3m+2 & \text{if } i = m-1 \\ 2m+i-1 & \text{if } m \le i \le m+2. \end{cases}$$

FIGURE 5. An illustration for the labeling given in the proof of Theorem 2.2.

If $m+3 \le i \le n-2$, then

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m + 1 - i & \text{if } i \equiv 1 \pmod{3} \\ 4m - i & \text{if } i \equiv 2 \pmod{3} \\ 4m + 2 - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0 v_{n-1}) = 3m + 4,$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 5 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m + 6.

Case $m \equiv 4 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i = 0, 2, \dots, m-2\\ (i+1)/2 & \text{if } i = 1, 3, \dots, m-1\\ 3m/2+4 & \text{if } i = m. \end{cases}$$

$$\lambda(v_i) = \begin{cases} (i+1)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+3)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+5)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 5 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 0 \pmod{6} \\ 3m/2+3 & \text{if } i = m+2, \end{cases}$$

$$\lambda(u) = (m+2)/2,$$

$$\lambda(w) = (3m+4)/2,$$

$$\lambda(v_iv_{i+1}) = \begin{cases} 4m-i+3 & \text{if } 0 \leq i \leq m-2 \\ 3m+2 & \text{if } i = m-1 \\ 2m+i-1 & \text{if } m < i \leq m+2. \end{cases}$$

FIGURE 6. An illustration for the labeling given in the proof of Theorem 2.2.

If $m+3 \le i \le n-2$, then

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m + 1 - i & \text{if } i \equiv 1 \pmod{3} \\ 4m - i & \text{if } i \equiv 2 \pmod{3} \\ 4m + 2 - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0 v_{n-1}) = 3m + 4$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 6 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m+6.

Case $m \equiv 2 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i=0,2,\ldots,m-2\\ (i+1)/2 & \text{if } i=1,3,\ldots,m-1\\ 3m/2+4 & \text{if } i=m\\ (2m-i+7)/2 & \text{if } i=m+1,m+3\\ 3m/2+3 & \text{if } i=m+2\\ 2m-i/2+8 & \text{if } i=m+4,m+6. \end{cases}$$

If i = m + 5, $m + 7 \le i \le n - 1$, then

$$\lambda(v_i) = \begin{cases} (i+5)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+1)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+3)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 0 \pmod{6}, \end{cases}$$

$$\lambda(u) = (m+2)/2,$$

$$\lambda(w) = (3m+4)/2,$$

FIGURE 7. An illustration for the labeling given in the proof of Theorem 2.2.

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m - i + 3 & \text{if } 0 \le i \le m - 2\\ 3m + 2 & \text{if } i = m - 1\\ 2m + i - 1 & \text{if } m \le i \le m + 2\\ 3m - 2 & \text{if } i = m + 3\\ 2m + i - 9 & \text{if } m + 4 \le i \le m + 6. \end{cases}$$

If $m+7 \le i \le n-2$, then

$$\lambda(v_i v_{i+1}) = \begin{cases} 4m - i & \text{if } i \equiv 1 \pmod{3} \\ 4m + 2 - i & \text{if } i \equiv 2 \pmod{3} \\ 4m + 1 - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0 v_{n-1}) = 3m + 4,$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 7 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m+6.

Case $m \equiv 5 \pmod{6}$

$$\lambda(v_i) = \begin{cases} m+2+i/2 & \text{if } i=0,2,\ldots,m-1\\ (i+1)/2 & \text{if } i=1,3,\ldots,m-2\\ (m+5)/2 & \text{if } i=m\\ (4m-i+10)/2 & \text{if } i=m+1,m+3\\ (m+3)/2 & \text{if } i=m+2\\ (2m-i+13)/2 & \text{if } i=m+4,m+6. \end{cases}$$

If i = m + 5, $m + 7 \le i \le n - 1$, then

$$\lambda(v_i) = \begin{cases} (i+5)/2 & \text{if } i \equiv 1 \pmod{6} \\ m+3+i/2 & \text{if } i \equiv 2 \pmod{6} \\ (i+1)/2 & \text{if } i \equiv 3 \pmod{6} \\ m+4+i/2 & \text{if } i \equiv 4 \pmod{6} \\ (i+3)/2 & \text{if } i \equiv 5 \pmod{6} \\ m+2+i/2 & \text{if } i \equiv 0 \pmod{6}, \end{cases}$$

$$\lambda(u) = (m+1)/2.$$

FIGURE 8. An illustration for the labeling given in the proof of Theorem 2.2.

$$\lambda(w) = (3m+5)/2,$$

$$\lambda(v_i v_{i+1}) = \begin{cases}
4m-i+3 & \text{if } 0 \le i \le m-2 \\
3m+2 & \text{if } i=m-1 \\
2m+i-1 & \text{if } m \le i \le m+2 \\
3m-2 & \text{if } i=m+3 \\
2m+i-9 & \text{if } m+4 \le i \le m+6.
\end{cases}$$

If $m+7 \le i \le n-2$, then

$$\lambda(v_iv_{i+1}) = \begin{cases} 4m - i & \text{if } i \equiv 1 \pmod{3} \\ 4m + 2 - i & \text{if } i \equiv 2 \pmod{3} \\ 4m + 1 - i & \text{if } i \equiv 0 \pmod{3}, \end{cases}$$
$$\lambda(v_0v_{n-1}) = 3m + 4,$$
$$\lambda(uw) = 3m + 3.$$

(See Figure 8 for illustration.) It is easily seen that λ is a super edge-magic labeling of G with the edge magic number 5m+6. Thus, the graph G is super edge-magic.

3. Closing remark

We have shown that graph $K_2 \cup C_n$ is super edge-magic if n is even $(n \neq 10)$. It would be interesting to see if the graph is super edge-magic if n is odd. In fact, it seems to be very difficult to find families of graphs that are super edge-magic or are not.

References

- H. Enomoto, A. S. Llado, T. Nakamigawa, and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998), no. 2, 105-109.
- [2] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451–461.
- [3] G. Ringel and A. S. Llado, Another tree conjecture, Bull. Inst. Combin. Appl. 18 (1996), 83–85.

- [4] W. D. Wallis, Magic Graphs, Birkhäuser Boston, Inc., Boston, MA, 2001.
- W. D. Wallis, E. T. Baskoro, M. Miller, and Slamin, Edge-magic total labelings, Australas.
 J. Combin. 22 (2000), 177-190.
- [6] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

JI YEON PARK
DEPARTMENT OF APPLIED MATHEMATICS
KYUNG HEE UNIVERSITY
YONGIN 449-701, KOREA
E-mail address: jypark0902@khu.ac.kr

JIN HYUK CHOI
DEPARTMENT OF APPLIED MATHEMATICS
KYUNG HEE UNIVERSITY
YONGIN 449-701, KOREA
E-mail address: jinhchoi@khu.ac.kr

JAE-HYEONG BAE
DEPARTMENT OF APPLIED MATHEMATICS
KYUNG HEE UNIVERSITY
YONGIN 449-701, KOREA
E-mail address: jhbae@khu.ac.kr