EXISTENCE OF NONOSCILLATORY SOLUTIONS OF HIGHER-ORDER DIFFERENCE EQUATIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS

QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, AND ZHENGUO ZHANG

ABSTRACT. In this paper, we investigate nonoscillatory solutions of a class of higher order neutral nonlinear difference equations with positive and negative coefficients

 $\Delta^m(x(n)+p(n)x(\tau(n)))+f_1(n,x(\sigma_1(n)))-f_2(n,x(\sigma_2(n)))=0, \ n\geq n_0.$ Some sufficient conditions for the existence of nonoscillatory solutions are obtained.

1. Introduction

Consider the higher-order neutral nonlinear difference equations with positive and negative coefficients

(1.2)
$$\Delta^m(x(n) + p(n)x(\tau(n))) + f_1(n, x(\sigma_1(n))) - f_2(n, x(\sigma_2(n))) = g(n), \ n \ge n_0,$$

where $\tau(n)$, $\sigma_i(n)$ are sequences of positive integers, $\tau(n) \leq n$, $\lim_{n \to \infty} \tau(n) = \infty$, $\lim_{n \to \infty} \sigma_i(n) = \infty$, i = 1, 2, $p(n), g(n), b_j(n)$ are sequences of real numbers, $f_i(n, x)$ is continuous for $x, x f_i(n, x) > 0$ holds for $x \neq 0$, i = 1, 2. Further (1.4) $|f_i(n, x) - f_i(n, y)| \leq g_i(n)|x - y|$,

where $q_i(n)$ is a sequence of positive real numbers, i = 1, 2. We also have

Received April 24, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 39A10,39A05.

Key words and phrases. nonoscillatory, positive and negative coefficients, neutral term. Research are supported by the Natural Science Foundation of Hebei Province and Main Foundation of Hebei Normal University.

$$(1.5) \qquad \sum_{s=n}^{\infty} (s-n)^{(m-1)} q_i(s) < \infty,$$

(1.6)
$$\sum_{s=n}^{\infty} (s-n)^{(m-1)} |g(s)| < \infty,$$

(1.7)
$$\sum_{s=n}^{\infty} (s-n)^{(m-1)} |b_j(s)| < \infty.$$

Recently, there has been an increasing interest in the study of the oscillation and existence for solutions of differential and difference equations. The papers [2, 3, 7] discussed the existence of nonoscillatory solutions of differential equations. The papers [1, 4, 5] discussed the oscillation of difference equations. But there are relatively few which guarantee the existence of nonoscillatory solutions of difference equations, see [6].

This paper is motivated by recent paper [8], where the authors gave some sufficient conditions for the existence of nonoscillatory solutions of the first-order neutral delay differential equations. The purpose of this paper is to present some new criteria for the existence of nonoscillatory solution of (1.1)-(1.3).

A solution of Eq.(1.1)((1.2),(1.3)) is said to be oscillatory if it has arbitrarily large zeros; otherwise it is said to be nonoscillatory.

2. Main results

To obtain our main results, we need the following lemma.

Lemma 1 ([1]). The space l^{∞} is the Banach space of all bounded real sequence. Let K be a closed bounded and convex subset of l^{∞} . Suppose Γ is a continuous map such that $\Gamma(K) \subset K$, and suppose further that $\Gamma(K)$ is uniformly Cauchy. Then Γ has a fixed point in K.

Theorem 1. Assume that $1 < p_1 \le p(n) \le p_2$, (1.4) and (1.5) hold, then (1.1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose $N_1 > n_0$, such that

$$N_0 = \min\{\inf_{n > N_1} \{\tau(n)\}, \inf_{n > N_1} \{\sigma_1(n)\}, \inf_{n > N_1} \{\sigma_2(n)\}\} \ge n_0.$$

Let BC be the bounded real sequence of Banach space l^{∞} and $||x(n)||=\sup_{n\geq N_1}|x(n)|$. Define a set $X\subset BC$ as follows:

$$X = \left\{ x(n) \in BC, \ \triangle x(n) \le 0, \ \begin{array}{l} 0 < M_1 \le x(n) \le p_1 M_1, & n \ge N_1 \\ x_{(n)} = x_{(N_1)}, & N_0 \le n \le N_1 \end{array} \right\}.$$

Then X is a closed bounded and convex subset of BC.

Let $c = \min\{\frac{\alpha - M_1}{p_1 M_1}, \frac{p_1 M_1 - \alpha}{p_1 M_1}\}$, where $M_1 < \alpha < p_1 M_1$. We choose $N \ge N_1$, such that for $n \ge N$, $\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} q_i(s) \le c$. For any $x \in X$, define:

$$\psi(n) = \begin{cases} \sum_{i=1}^{\infty} \frac{(-1)^{i-1} x(\tau^{-i}(n))}{H_i(\tau^{-i}(n))}, & n \ge N \\ \psi(N), & N_0 \le n \le N, \end{cases}$$

where $\tau^0(n) = n$, $\tau^i(n) = \tau(\tau^{i-1}(n))$, $\tau^{-i}(n) = \tau^{-1}(\tau^{-(i-1)}(n))$, $H_0(n) = 1$. $H_i(n) = \prod_{j=0}^{i-1} p(\tau^j(n)), \ i = 1, 2, \dots$ From $M_1 \le x(n) \le p_1 M_1$, we know 0 < 1 $\psi(n) < p_1 M_1, \ n > N.$

Define a mapping Γ on X as follows:

(2.1)

 $\Gamma x(n)$

$$=\begin{cases} \alpha+(-1)^{m-1}\sum_{s=n}^{\infty}\frac{(s-n+1)^{(m-1)}}{(m-1)!}[f_1(s,\psi(\sigma_1(s)))-f_2(s,\psi(\sigma_2(s)))],\ n\geq N,\\ \Gamma x(N),\quad N_0\leq n\leq N. \end{cases}$$

 Γ satisfies the following conditions:

(a) $\Gamma(X) \subseteq X$.

In fact, for any $x \in X$, $\Gamma x(n) \geq \alpha - p_1 M_1 c \geq M_1$, $\Gamma x(n) \leq \alpha + p_1 M_1 c \leq \alpha$ p_1M_1 .

(b) Γ is continuous.

Let $\{x_k(n)\}\$ be a sequence in X, such that $\lim_{k\to\infty} ||x_k-x|| = 0$. Since X is a closed set, we know $x\in X$. For any $\varepsilon>0$, we can choose $n_2 > N$, such that

$$\sum_{s=n_2}^{\infty} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} q_i(s) < \varepsilon, \ i=1, \ 2.$$

$$|\Gamma x_k(n) - \Gamma x(n)|$$

$$\leq \sum_{s=n}^{n_2-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} (\sum_{i=1}^2 q_i(s)|\psi_k(\sigma_i(s)) - \psi(\sigma_i(s))|)$$

$$+ \sum_{s=n_2}^{\infty} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s,\psi_k(\sigma_1(s))) - f_2(s,\psi_k(\sigma_2(s)))|$$

$$- f_1(s,\psi(\sigma_1(s))) + f_2(s,\psi(\sigma_2(s)))|$$

$$\leq \sum_{s=n}^{n_2-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} \sum_{i=1}^2 q_i(s)|\psi_k(\sigma_i(s)) - \psi(\sigma_i(s))|$$

$$+ \frac{2p_1 M_1}{(m-1)!} \sum_{s=n}^{\infty} (s-n_0+1)^{(m-1)} (q_1(s) + q_2(s)).$$

So $\lim_{k\to\infty} ||\Gamma x_k - \Gamma x|| = 0.$

(c) Γx is uniformly Cauchy.

 $\forall \stackrel{\cdot}{arepsilon} > 0, \ \exists \ n_2 \ ext{such that for} \ m_1 > m_2 \geq n_2 \ ext{and for all} \ x(n) \in X,$

$$|\Gamma x(m_1) - \Gamma x(m_2)| \le \sum_{s=m_2}^{m_1-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} [q_1(s)\psi(\sigma_1(s)) + q_2(s)\psi(\sigma_2(s))]$$

$$< \varepsilon.$$

This shows ΓX is uniformly Cauchy.

From Lemma 1, there exists $x \in X$, such that $x = \Gamma x$, i.e.,

x(n)

$$= \alpha + (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} [f_1(s,\psi(\sigma_1(s))) - f_2(s,\psi(\sigma_2(s)))], n \ge N.$$

Since $\psi(n) + p(n)\psi(\tau(n)) = x(n)$, we get

$$\psi(n) + p(n)\psi(\tau(n))$$

$$= \alpha + (-1)^{m-1} \sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} [f_1(s,\psi(\sigma_1(s))) - f_2(s,\psi(\sigma_2(s)))].$$

So
$$\psi(n)$$
 satisfies (1.1) for $n \geq N$, and $\frac{p_1-1}{p_1p_2}x(\tau^{-1}(n)) \leq \psi(n) \leq x(n)$.

Theorem 2. Assume that $0 \le p(n) \le p < 1$, (1.4) and (1.5) hold, then (1.1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose $N > n_0$, such that

$$N_0 = \min\{\inf_{n>N} \{\tau(n)\}, \inf_{n>N} \{\sigma_1(n)\}, \inf_{n>N} \{\sigma_2(n)\}\} \ge n_0.$$

Let BC be the bounded real sequence of Banach space l^{∞} and $||x(n)|| = \sup_{n>N} |x(n)|$. Define a set $\Omega \subset BC$ as follows:

$$\Omega = \{x(n) \in BC, 1 - p \le x(n) \le \frac{1}{1 - n}\}.$$

Then Ω is a closed bounded and convex subset of BC. From (1.5), we know that there exists N_1 , such that for $n > N_1$,

$$\sum_{s=n}^{\infty} \frac{(s-n+1)^{(m-1)}}{(m-1)!} q_i(s) < \frac{p(1-p)}{2}, \quad i = 1, 2.$$

Define two maps Γ_1 and Γ_2 on Ω as follows:

$$(\Gamma_1 x)(n) = \left\{egin{array}{ll} rac{2-p+p^2}{2(1-p)} - p(n)x(au(n)), & n \geq N_1 \ (\Gamma_1 x)(N_1), & N_0 \leq n \leq N_1 \end{array}
ight.$$

$$(\Gamma_{2}x)(n) = \begin{cases} \frac{(-1)^{m-1}}{(m-1)!} \sum_{s=n}^{\infty} (s-n+1)^{(m-1)} [f_{1}(s, x(\sigma_{1}(s))) - f_{2}(s, x(\sigma_{2}(s)))], & n \geq N_{1} \\ (\Gamma_{2}x)(N_{1}) & N_{0} \leq n \leq N_{1}. \end{cases}$$

For any $x, y \in \Omega$,

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \le \frac{2 - p + p^2}{2(1 - p)} + \frac{p}{2} = \frac{1}{1 - p},$$

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \ge \frac{2 - p + p^2}{2(1 - p)} - \frac{p}{1 - p} - \frac{p}{2} = 1 - p.$$

So $\Gamma_1 x + \Gamma_2 y \in \Omega$.

Since $0 \le p(n) \le p < 1$, Γ_1 is a contraction mapping. It is easy to know that Γ_2 is uniformly bounded. We now show that Γ_2 is continuous. For any $\varepsilon > 0$, we can choose $n_2 > N_1$, such that

$$\sum_{s=n_2}^{\infty} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} q_i(s) < \varepsilon.$$

Let $\{x_k(n)\}\$ be a sequence in Ω , such that $\lim_{k\to\infty} ||x_k-x||=0$. Since Ω is a closed set, we know $x\in\Omega$ and

$$\begin{aligned} &|\Gamma_{2}x_{k}(n) - \Gamma_{2}x(n)|\\ &\leq \left|\sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} (f_{1}(s,x_{k}(\sigma_{1}(s))) - f_{1}(s,x(\sigma_{1}(s))))\right|\\ &+ \left|\sum_{s=n}^{n_{2}-1} \frac{(s-n+1)^{(m-1)}}{(m-1)!} (f_{2}(s,x_{k}(\sigma_{2}(s))) - f_{2}(s,x(\sigma_{2}(s))))\right|\\ &+ \sum_{j=1}^{2} \sum_{s=n_{2}}^{\infty} \frac{(s-n_{0}+1)^{(m-1)}}{(m-1)!} q_{j}(s) |x_{k}(\sigma_{j}(s)) - x(\sigma_{j}(s))|. \end{aligned}$$

Since f_j is continuous for x, we get $\lim_{k\to\infty}||\Gamma_2x_k-\Gamma_2x||=0$. So Γ_2 is continuous. $\forall \varepsilon>0, \exists N_2$ such that for $m_1>m_2\geq N_2$ and for all $x(n)\in\Omega$,

$$|\Gamma_2 x(m_1) - \Gamma_2 x(m_2)|$$

$$\leq \sum_{s=m_2}^{m_1-1} \frac{(s-n_0+1)^{(m-1)}}{(m-1)!} |f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s)))| \leq \varepsilon.$$

By discrete Krasnoselskii's fixed point theorem, there exists $x \in \Omega$, such that $x = \Gamma_1 x + \Gamma_2 x$, i.e.,

$$x(n) = \frac{2 - p + p^2}{2(1 - p)} - p(n)x(\tau(n))$$

$$+(-1)^{m-1}\sum_{s=n}^{\infty}\frac{(s-n+1)^{(m-1)}}{(m-1)!}(f_1(s,x(\sigma_1(s)))-f_2(s,x(\sigma_2(s)))).$$

x(n) is a bounded nonoscillatory solution of (1.1) which is bounded away from zero.

Theorem 3. Assume that -1 , (1.4) and (1.5) hold, then (1.1)has a bounded nonoscillatory solution which is bounded away from zero.

Proof. Let BC be the bounded real sequence of Banach space l^{∞} and ||x(n)|| =sup |x(n)|. We choose M_1, M_2, α such that $0 < M_1 < \alpha < (1+p)M_2$. Define

 $\Omega = \{x \in BC, M_1 \le x(n) \le M_2, \ n \ge n_0\}.$ Let $c = \min\{\frac{\alpha - M_1}{M_2}, \frac{M_2 - \alpha}{M_2}\}$, from (1.5) we know that there exists $N > n_0$ such that for $n \ge N$,

$$\frac{1}{(m-1)!} \sum_{s=n}^{\infty} (s-n+1)^{(m-1)} (q_1(s) + q_2(s)) \le c.$$

For any $x \in \Omega$, define:

$$\varphi(n) = \begin{cases} \sum_{\substack{i=0\\ \frac{x_N}{1+p_N}}}^{k_n-1} (-1)^i p_n^{(i)} x(\tau_n^{(i)}) + (-1)^{k_n} p_n^{(k_n)} \frac{x_N}{1+p_N}, & n \ge N \\ & n_0 \le n \le N, \end{cases}$$

where we take k_n such that $n_0 \leq \tau_n^{(k_n)} \leq N$, $\tau_n^{(0)} = n$, $\tau_n^{(1)} = \tau_n$, $\tau_n^{(2)} = \tau_{\tau_n}, \ldots, \tau_n^{(k)} = \tau_{\tau_n^{(k-1)}}, \ p_n^{(0)} = 1, \ p_n^{(1)} = p_n, \ldots, p_n^{(s)} = p_n p_{\tau_n} \cdots p_{\tau_n^{(s-1)}}$. It is easy to prove $x(n) = \varphi(n) + p(n)\varphi(\tau(n)), \ n \geq N$ and $M_1 \leq x(n) \leq \varphi(n) \leq M$ $\frac{M_2}{1+p}.$ Define a mapping Γ on Ω as follows:

(2.2)

 $\Gamma x(n)$

$$=\begin{cases} \alpha + \sum_{s=n}^{\infty} \frac{(-1)^{m-1}(s-n+1)^{(m-1)}}{(m-1)!} [f_1(s,\varphi(\sigma_1(s))) - f_2(s,\varphi(\sigma_2(s)))], & n \geq N, \\ \Gamma x(N), & n_0 \leq n \leq N. \end{cases}$$

Since $\Gamma x(n) \geq \alpha - cM_2 \geq M_1, \ \Gamma x(n) \leq \alpha + cM_2 \leq M_2, \ \text{we get} \ \Gamma \Omega \subseteq \Omega.$ Similar to the proof of Theorem 1, we can obtain Γ is continuous and uniformly Cauchy. So there exists $x \in \Omega$ such that $x = \Gamma x$. The proof is complete.

Theorem 4. Assume that $p_1 \leq p(n) \leq p_2 < -1$, (1.4) and (1.5) hold, then (1.1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose positive constants M_1, M_2, α such that $-p_1 M_1 < \alpha < (-p_2 - p_3)$ 1) M_2 . BC is defined as in Theorem 3. Let $\Omega = \{x \in BC, M_1 \leq x(n) \leq x(n) \leq x(n) \leq x(n) \}$ $M_2, n \ge n_0$, $c = \min\{\frac{(M_1p_1+\alpha)p_2}{M_2p_1}, \frac{(-p_2-1)M_2-\alpha}{M_2}\}$. Choosing N sufficiently large such that for $n \geq N$, we have

$$\frac{1}{(m-1)!} \sum_{s=n}^{\infty} q_i(s)(s-n+1)^{(m-1)} \le c, \quad i = 1, 2.$$

Define two maps Γ_1 and Γ_2 on Ω as follows:

$$(\Gamma_1 x)(n) = \begin{cases} -\frac{\alpha}{p(\tau^{-1}(n))} - \frac{x(\tau^{-1}(n))}{p(\tau^{-1}(n))}, & n \ge N\\ (\Gamma_1 x)(N), & n_0 \le n \le N \end{cases}$$

$$\begin{split} &(\Gamma_2 x)(n) \\ &= \begin{cases} \frac{(-1)^{m-1}}{(m-1)!p(\tau^{-1}(n))} \times \\ &\sum_{s=\tau^{-1}(n)}^{\infty} (s-\tau^{-1}(n)+1)^{(m-1)} [f_1(s,x(\sigma_1(s))) - f_2(s,x(\sigma_2(s)))], & n \geq N \\ (\Gamma_2 x)(N), & n_0 \leq n \leq N. \end{cases} \end{split}$$
 For any $x,y \in \Omega$,

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \ge \frac{-\alpha}{p_1} + \frac{cM_2}{p_2} \ge M_1,$$

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \le \frac{-\alpha}{p_2} - \frac{M_2}{p_2} - \frac{cM_2}{p_2} \le M_2,$$

that is $\Gamma_1 x + \Gamma_2 y \in \Omega$.

We also can prove that Γ_1 is a contraction mapping, Γ_2 is uniformly bounded and continuous. Further we know Γ_2 is uniformly Cauchy. So there exists $x \in \Omega$ such that $x = \Gamma_1 x + \Gamma_2 x$. i.e.,

$$x(n) = -\frac{\alpha}{p(\tau^{-1}(n))} - \frac{x(\tau^{-1}(n))}{p(\tau^{-1}(n))} + \frac{(-1)^{m-1}}{(m-1)!p(\tau^{-1}(n))}$$
$$\times \sum_{s=\tau^{-1}(n)}^{\infty} (s - \tau^{-1}(n) + 1)^{(m-1)} [f_1(s, x(\sigma_1(s))) - f_2(s, x(\sigma_2(s)))].$$

The proof is complete.

Theorem 5. Assume that p(n) satisfies one of the conditions of Theorem 1-Theorem 4, (1.4), (1.5) and (1.6) hold, then (1.2) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. Set $g_{+}(n) = \max\{g(n), 0\}, g_{-}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = \max\{-g(n), 0\}, \text{ then } g(n) = g_{+}(n) - g_{+}(n) = g_{+}(n) - g_{+}(n) = g_{+}(n) = g_{+}(n) - g_{+}(n) = g_{+}(n)$ $g_{-}(n)$. (1.2) can be written as follows:

$$\Delta^m(x(n)+p(n)x(\tau(n))) + [f_1(n,x(\sigma_1(n)))+g_-(n)] - [f_2(n,x(\sigma_2(n)))+g_+(n)] = 0.$$
 Let

$$F_1(n, x(\sigma_1(n))) = f_1(n, x(\sigma_1(n))) + g_-(n),$$

$$F_2(n, x(\sigma_2(n))) = f_2(n, x(\sigma_2(n))) + g_+(n).$$

Similar to the proof of Theorem 1-Theorem 4, we obtain the conclusion.

Theorem 6. Assume that p(n) satisfies one of the conditions of Theorem 1-Theorem 4, (1.7) holds, then (1.3) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We only prove the case that $0 \le p(n) \le p < 1$.

Let BC be the bounded real sequence of Banach space l^{∞} and $||x(n)|| = \sup_{n \ge n_0} |x(n)|$. We choose M_1, M_2, α such that $pM_2 + M_1 < \alpha < M_2$. Define $\Omega = n \ge n_0$

 $\{x \in BC, M_1 \le x(n) \le M_2\}, c = \min\{\frac{\alpha - pM_2 - M_1}{lM_2}, \frac{M_2 - \alpha}{lM_2}\}.$ N is sufficiently large such that for $n \ge N$,

$$\frac{1}{(m-1)!} \sum_{s=n}^{\infty} (s-n+1)^{(m-1)} |b_i(s)| \le c.$$

Define two maps Γ_1 and Γ_2 on Ω as follows:

$$(\Gamma_1 x)(n) = \left\{ egin{array}{ll} (\alpha - p(n) x(au(n)), & n \geq N \ (\Gamma_1 x)(N), & n_0 \leq n \leq N, \end{array}
ight. \ (\Gamma_2 x)(n) = \left\{ egin{array}{ll} (-1)^{m-1} \sum\limits_{s=n}^{\infty} rac{(s-n+1)^{(m-1)}}{(m-1)!} \sum\limits_{i=1}^{l} b_i(s) x(\sigma_i(s)), & n \geq N \ (\Gamma_2 x)(N), & n_0 \leq n \leq N. \end{array}
ight.$$

For any $x, y \in \Omega$,

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \ge \alpha - pM_2 - lM_2c \ge M_1,$$

$$(\Gamma_1 x)(n) + (\Gamma_2 y)(n) \le \alpha + lM_2c \le M_2,$$

that is $\Gamma_1 x + \Gamma_2 y \in \Omega$.

 Γ_1 is a contraction mapping, Γ_2 is continuous and uniformly Cauchy, uniformly bounded. So there exists $x \in \Omega$ such that $x = \Gamma_1 x + \Gamma_2 x$. The proof is complete.

References

- S. Z. Chen and L. Erbe, Oscillation results for second order scalar and matrix difference equations, Comput. Math. Appl. 28 (1994), no. 1-3, 55-69.
- [2] Q. K. Kong, Y. J. Sun, and B. G. Zhang, Nonoscillation of a class of neutral differential equations, Comput. Math. Appl. 44 (2002), no. 5-6, 643-654.
- [3] K. Y. Liu and Z. Q. Zhang, Existence of positive solutions to neutral differential and difference equations with delays, Acta Sci. Natur. Univ. Norm. Hunan. 21 (1998), no. 3, 12–18.
- [4] S. H. Saker, Oscillation of second order nonlinear delay difference equations, Bull. Korean Math. Soc. 40 (2003), no. 3, 489-501.
- [5] E. Thandapani and K. Ravi, Oscillation of second-order half-linear difference equations, Appl. Math. Lett. 13 (2000), no. 2, 43-49.
- [6] J. Yang and X. P. Guan, Positive solutions of a class of neutral delay difference equations, Acta Math. Sinica (Chin. Ser.) 44 (2001), no. 3, 409-416.
- [7] Y. H. Yu and H. Z. Wang, Nonoscillatory solutions of second-order nonlinear neutral delay equations, J. Math. Anal. Appl. 311 (2005), no. 2, 445–456.
- [8] W. P. Zhang, W. Feng, J. R. Yan, and J. S. Song, Existence of nonoscillatory solutions of first-order linear neutral delay differential equations, Comput. Math. Appl. 49 (2005), no. 7-8, 1021-1027.

QIAOLUAN LI
COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE
HEBEI NORMAL UNIVERSITY
SHIJIAZHUANG, 050016, P. R. CHINA
E-mail address: q1171125@163.com

HAIYAN LIANG
COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE
HEBEI NORMAL UNIVERSITY
SHIJIAZHUANG, 050016, P. R. CHINA
E-mail address: liang730110@eyou.com

Wenlei Dong
College Of Mathematics And Information Science
Hebei Normal University
Shijiazhuang, 050016, P. R. China
and
Department of Basic Science
Shijiazhuanh Institute of Railway Technology
Shijiazhuang, 050041, P. R. China
E-mail address: wenleidong@163.com

ZHENGUO ZHANG
COLLEGE OF MATHEMATICS AND INFORMATION SCIENCE
HEBEI NORMAL UNIVERSITY
SHIJIAZHUANG, 050016, P. R. CHINA
AND
INFORMATION COLLEGE
ZHEJIANG OCEAN UIVERSITY
ZHOUSHAN, 316000, P. R. CHINA
E-mail address: zhangzhg@mail.hebtu.edu.cn