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EXISTENCE OF NONOSCILLATORY SOLUTIONS OF
HIGHER-ORDER DIFFERENCE EQUATIONS WITH
POSITIVE AND NEGATIVE COEFFICIENTS

QraoLUAN LI, HATYAN LIANG, WENLEI DONG, AND ZHENGUO ZHANG

ABSTRACT. In this paper, we investigate nonoscillatory solutions of a
class of higher order neutral nonlinear difference equations with positive
and negative coefficients

A™(@(n) +p(n)z(T(n)) + f1 (n, 2(01(n))) - f2(n, 2(02(n))) = 0, n > no.

Some sufficient conditions for the existence of nonoscillatory solutions are
obtained.

1. Introduction

Consider the higher-order neutral nonlinear difference equations with posi-
tive and negative coefficients

A™(@(n)+p(n)z(r(n)))
(1.1) + fi(n, 2(01(n))) = fa(n, 2(02(n))) =0, n > no,
1y A7)

+ filn, 2(01(n)) = faln, x(02(n))) = g(n), n 2 no,

i
(1.3)  A™a(n) +p(n)z(r(n) + Y _ bi(n)z(oi(n)) = 0, n > no,

=1
where 7(n), o;(n) are sequences of positive integers, 7(n) < n, lim 7(n) =
n—o
oo, lim o3(n) = o0, i = 1,2, p(n), g(n),b;(n) are sequences of real numbers,
n—00
fi(n, ) is continuous for x, z f;(n,z) > 0 holds for z # 0, s = 1, 2. Further

(14) Ifl(nvx) "fi(n’y)[ Sqi(n)lx_ylv
where g;(n) is a sequence of positive real numbers, i = 1,2. We also have
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o0

(1.5) Z(s —n)™Yg(s) < oo,

s=n

o

(1.6) Y (s =m)™Dg(s)] < oo,

s=n

o0
(1.7) > (s = n)m Y b;(s)| < oo.
s=n

Recently, there has been an increasing interest in the study of the oscilla-
tion and existence for solutions of differential and difference equations. The
papers [2, 3, 7] discussed the existence of nonoscillatory solutions of differential
equations. The papers [1, 4, 5] discussed the oscillation of difference equations.
But there are relatively few which guarantee the existence of nonoscillatory
solutions of difference equations, see [6].

This paper is motivated by recent paper [8], where the authors gave some
sufficient conditions for the existence of nonoscillatory solutions of the first-
order neutral delay differential equations. The purpose of this paper is to
present some new criteria for the existence of nonoscillatory solution of (1.1)-
(1.3).

A solution of Eq.(1.1)((1.2),(1.3)) is said to be oscillatory if it has arbitrarily
large zeros; otherwise it is said to be nonoscillatory.

2. Main results
To obtain our main results, we need the following lemma.

Lemma 1 ([1]). The space I*° is the Banach space of all bounded real sequence.
Let K be a closed bounded and convex subset of [°°. Suppose I’ is a continuous
map such that T'(K) C K, and suppose further that I'(K) is uniformly Cauchy.
Then T has a fized point in K.

Theorem 1. Assume that 1 < p1 < p(n) < pa, (1.4) and (1.5) hold, then (1.1)
has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose N; > ng, such that
No = min{ jnf {r(n)}, inf {o2(0)}, inf {oa2()}} = no.

Let BC be the bounded real sequence of Banach space I and [|z(n)| =
sup |z(n)|. Define a set X C BC as follows:

nZNl

X = {w(n) € BC, Aa(n) <0, L <MiSz(m)spdy,  n2 M }

Z(n) = T(Ny)» No<n< M

Then X is a closed bounded and convex subset of BC.



EXISTENCE OF NONOSCILLATORY SOLUTIONS 25

Let ¢ = mm{mL % where My < o < pyM;. We choose N > Ny,

such that for n > N, Z %qi(s) < c. For any z € X, define:
s=n

S )1 1z<7 M) s N
vy ={ & AT 2
P(N), No<n<N,
where 7%(n) =n, 7¢(n) = 7(r°"1(n)), 77(n) = 7 (7~ D(n)), Hyo(n) =1
i1
Hi(n) = [[ p(r7(n)), i = 1,2,.... From M; < z(n) < piMy, we know 0 <
=0

Y(n) <p1Mi, n> N.
Define a mapping I’ on X as follows:

(2.1)
I'z(n)
_ et eyt © S 6 w01 (9) -l wloa ()], m 2 N,
I'z(N), No<n<N.

I' satisfies the following conditions:

(a) T(X)C X.

In fact, for any x € X, I'z(n) > a — p1Mic > My, Tz(n) < a+p Mic <
M.

(b) I is continuous.

Let {zx(n)} be a sequence in X, such that kli_)n;() l|lzx — z|| = 0.

Since X is a closed set, we know x € X. For any ¢ > 0, we can choose
ng > N, such that

i (S —ng + 1)(m-1)

gi(s)<e, i=1, 2.

= (m —1)!
o (n) ~ Ta(o)
< z ‘—SJM (E a6 welout) = vl
+ 30 LR DT s e 61) — o b))
oo st
< Z(—%Zq (o) ~ $le(s)

2p1M1' Z — g+ 1)(’"“1)(q1 (8) + q2(s)).

S=MNg
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So klim [Tz, — Tx|| = 0.

(c) Tz is uniformly Cauchy.
Y ¢ > 0, 3 ng such that for m; > ms > ny and for all z(n) € X,

"l (s—n+1)m
Tomy) - To(ma)| < 3 %[ql (5)0(01(5)) + q2(s)b(02(5))]
<e.

This shows I'’X is uniformly Cauchy.
From Lemma 1, there exists x € X, such that x = T'z, i.e.,

X (s—n (m—1)
= ot (<) Y S s s ()~ s, ol 2 Y

Since Y(n) + p(n)Y(r(n)) = z(n), we get
P(n) + p(n)i(r(n))

- - lz ”_“_ws $(01(5))) = fals, $(oa(s))]

So 9(n) satisfies (1.1) for n > N, and 222 -1 ~x(t7(n)) < ¢(n) < z(n). a

Theorem 2. Assume that 0 < p(n) < p < 1, (1.4) and (1.5) hold, then (1.1)
has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose N > ng, such that
Ny = mm{nuzlﬁl{r(n)},T}gﬁv{al(n)},ggg{az(n)}} > ng.

Let BC be the bounded real sequence of Banach space I and ||z(n)|| =
sup |z(n)|. Define a set & C BC as follows:
n>N

Q= {z(n) € BC,1-p < (n) < 1%5}.

Then {2 is a closed bounded and convex subset of BC. From (1.5), we know
that there exists Ny, such that for n > Ny,

> (8 —-n+ 1)(7”—1) p(l _p) )
T y— , i=1,2.
; ot ) <75 i=1
Define two maps I'; and I'; on Q as follows:
(T1z)(n) = 22_(1 +p) p(n)z(r(n)), n=N
(T1z)(N), No<n< N
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(Ta)(n)

(lml

o Z (s =n+ 1) V[fi(s,2(01(5))) = fals, 2(o2(s)], n > Ny
(FQiE)(Nl) N() S n S Nl.
For any z,y € Q,

- 2

2-p+p*> p p
T r > — ——=1—p.
Cia)m) + (Pa)) 2 St = 2 B =1
SoT'yz+ Ty e Q.
Since 0 < p(n) < p < 1, Ty is a contraction mapping. It is easy to know
that I'y is uniformly bounded. We now show that I'; is continuous. For any
€ > 0, we can choose ny > N, such that

qi(s) < e.

i (s —np +1)(m=1)
= (m—1)!
Let {zx(n)} be a sequence in Q, such that kllli()lo llzx — z|| = 0. Since Q is a
closed set, we know z € O and

Tozk(n) — Toz(n)]
na—1

s—n (m—1)
Z %(ﬁ(s,xk(al(s))) - f1(57x(01(3)))>~

ny—1 s—n (m—1)
Z ((m%l))!(h(s,mk(ag(s))) - f2(57x(02(s)))>1

s=n

<

+

S—TLO (m 1
P30y T sty 0 (o)

Jj=1s=n2

Since f; is continuous for z, we get klim [IToz, —Taz|| = 0. So Ty is continuous.
—00
Ve > 0,3N; such that for m; > mg > N» and for all z(n) € Q,
[F2$(m1) - Fzﬂl(mg)[

my—1

s —ng+1)(m=D
< I T o o) = el ) <

S=mao (m

By discrete Krasnoselskii’s fixed point theorem, there exists z € , such that
x=T124T2z, ie.,

2—p+p?

z(n) = 20-p) — p(n)z(r(n))



28 QIAOLUAN LI, HAIYAN LIANG, WENLEI DONG, AND ZHENGUO ZHANG

S -n4+ 1 (m—1)
) 32—;1 ‘T(fl(& z(01(s))) — fals, z(02(s)))).
z(n) is a bounded nonoscillatory solution of (1.1) which is bounded away from
zero. =

Theorem 3. Assume that —1 < p < p(n) <0, (1.4) and (1.5) hold, then (1.1)
has a bounded nonoscillatory solution which is bounded away from zero.

Proof. Let BC be the bounded real sequence of Banach space [ and ||z(n)|| =
sup |z(n)|. We choose M1, Ma, a such that 0 < M; < o < (1 + p)My. Define

nno

Q= {z € BC,M <z(n) <M, n>np} Letc—mm{—-L M, — 2=}, from

(1.5) we know that there exists N > ng such that for n > N,
1 -
w1 S s =+ D™D an(s) + aa(s) <
S$=n

For any z € Q, define:

kp—1
kn
o(m) = 4 2 CDPaEd) + (~)kpl s, nz N
‘1%1\;];7 ) S n S N7
where we take k, such that ng < 7% < N, 7{¥ = n, w5 = 7, P =
Trny - 7T”(lk) = T (’C 1y p’SI) = 1 p(l) = Pn, - 7p'£l) = PnPr, " p (8 . Itis

easy to prove :n(n) = p(n) + p(n)e(r(n)), n > N and M; < z(n) < pn) <
My
I+p’

Define a mapping I" on € as follows:

(2.2)
T'z(n)

o+ 3 CUEmmN T p (6 0(01(5)) — fals, @loa(s))], n > N,

= s=n

Tz(N), no<n<N.

Since T'z(n) > a —cMa > My, Tz(n) < a+cMy < M, we get TQ C Q.
Similar to the proof of Theorem 1, we can obtain I is continuous and uniformly

Cauchy. So there exists z € {2 such that = I'z. The proof is complete. O

Theorem 4. Assume that p; < p(n) < ps < —1, (1.4) and (1.5) hold, then
(1.1) has a bounded nonoscillatory solution which is bounded away from zero.

Proof. We choose positive constants My, Ma, a such that —p; My < a < (=p2—
1)M>. BC is defined as in Theorem 3. Let Q = {z € BC,M; < z(n) <

Ms, n > ng}, ¢ = min{ (Mlmz;a)m, (—W—AZM?—O‘}. Choosing N sufficiently

large such that for n > N, we have

——(m_ o Sals-nt D™ <o i-e
fs=n
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Define two maps I'y and I'y on  as follows:

_ 2
(Tia)(n) = P ~ w2 N
(T1z)(N), ng<n<N

(T2z)(n)

(_1)7n—1
=D ()

= X (s=m )+ HIVfils, 2(01(5) — fals,2(o2(s)], n= N

s=17-1(n)
(FQI‘)(N), ’I’L()S’I’LSN
For any z,y € Q,

X

(T1z)(n) + (Tay)(n) < — — =2 — =2 < My,

that is 1z + Iay € Q.

We also can prove that I'y is a contraction mapping, I' is uniformly bounded
and continuous. Further we know I's is uniformly Cauchy. So there exists z € 0
such that x = T'yx 4+ Taz. ie.,

__a  z(rTY{n) (=pym!
= T T ) s D)
x 3 (5= m) + DOV f(s,2(01(5))) = fals, a(o2(s))].
s=7-1(n)
The proof is complete. O

Theorem 5. Assume that p(n) satisfies one of the conditions of Theorem 1-
Theorem 4, (1.4), (1.5) and (1.6) hold, then (1.2) has a bounded nonoscillatory
solution which is bounded away from zero.

Proof. Set g (n)=max{g(n), 0}, g_ (n) =max{-g(n), 0}, then g(n) = g (n) —
g—(n). (1.2) can be written as follows:
A" (@(n)+p(n)z(r(n)))+{f1(n, 2(01(n))+9- ()]~ [f2(n, 2(02(n))) +94+(n)] =0.
Let

Fi(n,z(01(n))) = fi(n,z(o1(n))) + g-(n),

Fy(n,2(03(n))) = fa(n, x(02(n))) + g4 (n).
Similar to the proof of Theorem 1-Theorem 4, we obtain the conclusion. O

Theorem 6. Assume that p(n) satisfies one of the conditions of Theorem 1-
Theorem 4, (1.7) holds, then (1.3) has a bounded nonoscillatory solution which
is bounded away from zero.
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Proof. We only prove the case that 0 < p(n) <p < 1.
Let BC be the bounded real sequence of Banach space ™ and ||z(n)|| =
sup |z(n)|. We choose M1, Ms, o such that pMy + My < oo < My. Define 2 =

n>ng
{x € BC,M; < z(n) < Mz}, ¢ = min{a_”lMA;z_Ml, Nl[i/j‘;’} N is sufficiently
large such that for n > N,

ﬁ 3 (s —n+ )™ Dipy(s)| <.

Define two maps I'y and I'; on 2 as follows:
(2.3)
_ [ a—pma(rn), nzN
(M) (n) = { (T1z)(N), ng <n <N,

Cammy = | (O™ & TR S bsha(aie)), 2 N

(FQJ})(N), ) SHSN
For any z,y € O,
(T1z)(n) + (T2y)(n) > a — pMy — IMsc > M,

(T1z)(n) + (T2y)(n) < a + IMaye < My,

that is I'iz + ey € Q.

I'1 is a contraction mapping, I's is continuous and uniformly Cauchy, uni-
formly bounded. So there exists x € Q such that z = I'iz + ['sz. The proof is
complete. 0
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