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TANGENTIAL REPRESENTATIONS AT ISOLATED FIXED
POINTS OF ODD-DIMENSIONAL G-MANIFOLDS

KATSUHIRO KOMIYA

ABSTRACT. Let G be a compact abelian Lie group, and M an odd-
dimensional closed smooth G-manifold. If the fixed point set M G # 0 and
dim M® = 0, then G has a subgroup H with G/H = Zo, the cyclic group
of order 2. The tangential representation 7o(M) of G at z € M is also
regarded as a representation of H by restricted action. We show that the
number of fixed points is even, and that the tangential representations at
fixed points are pairwise isomorphic as representations of H.

1. Introduction

Let M be a smooth G-manifold, G a compact Lie group. M¢ denotes the
fixed point set of M. The G-action on M induces a linear action on the tangent
space 7,(M) at x € M©, called the tangential representation of G.

In his paper [4], P. A. Smith raised a question: if a finite group G acts
smoothly on an n-dimensional sphere 5™ with exactly two fixed points x and
Y, is it true that 7,(S™) = 7,(S™) as representations of G7 Since then, there are
published vast literature concerning this question. Some of them are affirmative
to the question, and some of them are negative. Among such results, S. E.
Cappell and J. L. Shaneson [2] gave counterexamples to the question. In fact,
it G = Z4i, with k£ > 2, the cyclic group of order 4k, they constructed smooth
actions of G on S™ with odd n > 9 and with exactly two fixed points x and y
such that 7,(S™) 2 7,(S™) as representations of G. But their examples show
that 7, (S™) = 7,(S™) as representations of Zor (C Zax) if we restrict the action
to ng.

In this paper we will show that this phenomenon occurs in more general
setting if G is a compact abelian Lie group and M is an odd-dimensional
closed smooth G-manifold with dim M¢ = 0, i.e., the fixed points are isolated.
In this case, since 7,(M) is odd-dimensional and the fixed point set 7, (M)¢
consists of only zero vector, G has a subgroup H with G/H & Z,. This follows

Received May 27, 2006.

2000 Mathematics Subject Classification. 57515, 57S17.

Key words and phrases. tangential representations, Smith equivalent, isolated fixed
points.

©2008 The Korean Mathematical Society
33



34 KATSUHIRO KOMIYA

easily from an elementary representation theory. 7,(M) is also regarded as a
representation of H by restricted H-action.

For any subgroup H of G with G/H = Zs and any representation V of H
with dim V = dim M, let

M&,V) ={z € M€ | 72 (M) &V as representations of H}.

Then M€ = U( vy M, (C;-I,V)' This is not necessarily a disjoint union.
The main results are:

Theorem 1.1. Let G be a compact abelian Lie group and M an odd-dimen-
sional closed smooth G-manifold with dim M€ = 0. Then
1) M%=Ugy, MG, vy, where (H,V) runs over the pairs of a subgroup
H of G with G/H = Zy and a representation V of H with dimV =
dim M and dim VH = odd, and
(2) #M(qu’v) is even for any such (H,V) as above, and #M€ is also even,
where # A denotes the number of points of a finite set A.

Corollary 1.2, Let G and M be as above.

(1) If there uniquely exists a subgroup H of G with G/H = Zy, then M
is divided into a disjoint union of pairs z and y, M€ = [[{x,y}, such
that 7,(M) = 7,(M) as representations of H.

(2) If, in particular, G = Zy or Zy, then the isomorphism 7,(M) = 7,(M)
in (1) can be taken as representations of G.

(3) If G = Zy @ H, H has no subgroup isomorphic to Z,, and if M% is
discrete, i.e., dim M%2 = 0, then the same result as in (2) also follows.

Remark 1. If G is a cyclic group of order 2k, k odd, then G is a group satisfying
the assumption in Corollary 1.2 (3). For this group Suh [5] considered the
question of Smith. As well as in our argument the index 2 subgroup plays a
crucial role in [5].

2. Preliminaries

Let M be a G-manifold with dim M¢ = 0. For any closed subgroup H of
G, M¥ denotes the fixed point set of M by restricted H-action. The tangent
space 7, (M) to M at € M ¥ becomes a representation of H, and decomposes,
as representations of H, into a direct sum 7, (M) = 7,(M#?) © v, (M*), where
7o(M™) is the tangent space to M and v, (M¥) is the normal space of M
in M at z. Note that 7,(M)¥ = 7,(M¥) and v, (MT)¥ = {0}.

Let W be a representation of H with W# = {0}, and define

MWEW) — 13 e MY |y (MP) = W),

If G is abelian, this is a G-invariant submanifold of M with dim MEW) =
dim M — dim W, and becomes a G/H-manifold. We easily see that

(M(H,W))G/H C MG and (M(H,W’))G/H — ng’v) for V = Rl@m
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where R? is an ¢-dimensional trivial representation with £ = dim M — dim W.
If G has a subgroup H with G/H = Z,, then G has a one-dimensional
nontrivial representation Ry induced from

G xRy —G/H xRy 2Zy xRy — Ry,

where the first map is induced from the projection G — G/H and the last
map is induced from the multiplication by +1. Any one-dimensional nontrivial
representation of G is given in this way.

For any * € M%, 7,(M) decomposes as representation of G into a direct
sum

(%) (M) 2RE & oRY &,

where H; (1 < i < t) are the distinct subgroups of G with G/H; = Zs, RY,
denotes the direct sum of ¢ copies of Ry, U does not contain Ry,, dimU is
even and U = {0}.

3. Proof of the results

Proof of Theorem 1.1. (1) It is clear that MY D Uz vy M(%y). To see the
reversed inclusion, take any point z € M% and consider the decomposition of
T (M) as in (x). Since dim 7, (M) is odd, ¢; is odd for some j with 1 < j < t.
Assume £ is odd, and let £ = ¢, H = H; and

W=RZ & - aRy olU.

Regarding W as a representation of H, we see x € M g“/) where V =RfaW,
dimV = dim M, and dim V¥ = ¢ is odd.

(2) Let (H,V) be a pair as in Theorem 1.1 (1), and decompose V into the
direct sum V = R® @ W such that W# = {0} and £ is odd. As noted in the
preceding section, M W) is a closed G/ H (X Z3)-manifold of dimension £. So
we obtain

XMUY= 5 (MUY S mod 2,
where x( ) denotes the Euler characteristic. (See for example, Bredon [1, Chap-
ter 111] or Kawakubo [3, Chapter 5].) Since dim MC = 0, x((MEWHG/HY is
just the number of points of (M (F-W)G/H — M(%,V)' So we see that #Mgﬂ,)
is even, since dim M#W) is odd and hence x(MUW)) = 0.

The number of j's with £; = odd in the decomposition () is odd, since
dim M is odd and dim U is even. As is easily seen from the above argument,
the number of such £;’s is the same as the number of (H, V)’s with x € M, (GH’V).
So we can assume for any z € M that the number of (H, V)’s with z € M(C;{,v)
is 2n, + 1 for some integer n, > 0. Then we have from Theorem 1.1 (1),

S @na+1)= ) #MG .
)

ze MG (H,V
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The left-hand side of this equation is equal to
2 ) ne+#MC,

ze MG
and the right-hand side is even from the fact just proved. This shows that
#MEC is even. O

Proof of Corollary 1.2. (1) If there uniquely exists a subgroup H of G with
G/H = Zj, then the union MY = U(H,V) M(%’V) is the disjoint union M¢ =
Iy M, (Cj‘I,V)’ where V' runs over the representations of H with dim V' = dim M
and dim V# = odd. Since #M (C]f'{)v) is even, this implies the required result.

(2) If G = Zy then H = {1}, and if G = Z4 then H = Z;. In these cases, for
any representation V of H with dimV = odd and dim V¥ = odd, the H-action
on V uniquely extends to a G-action on V such that V& = {0}. This implies
the result.

(3) It is sufficient to show that for z,y € M(CI'}’V), Tz(M) = 7,(M) as rep-
resentations of G. Let R_ be the nontrivial real 1-dimensional (irreducible)
representation of Z, given by the multiplication by +1, and R4 the trivial
real 1-dimensional representation of Zs. Let {Ui,Us,..., Uy} be a complete
set of real irreducible representations of H. For any ¢ with 1 < ¢ < k, let
U;=R;y®@U; and U_; = R_ ® U;. Then {U; | 1 < [i| < k} gives a complete
set of real irreducible representations of G = Zs & H. Thus we have

=M= P T, nM= O U
1<|i|<k 1<[il<k

for some nonnegative integers a;, b;, where U* denotes the direct sum of a;
copies of U;. Since U; = U; & U_; as representations of H, we have, as
representations of H,

k k
TI(M) ) @Uiai+a_i, Ty(M) ) @ Uibz"‘rb—i'
=1 1=1

Since z,y € M(%,V)’ we have 7,(M) = V = 1,(M) as representations of H.
Thus we have

(**) a;+a_; =b;+b_; (1 << k‘)
Since UX* = U for i > 0, and U%* = {0} for ¢ < 0, we have

k k
(M) 7 00y = @ UR, 7 (%) 2, (00 = UL

i=1 i=1
Since M%2 is discrete by the assumption, we have a; = b; = 0 for i > 0, and
hence (**) implies a; = b; for any ¢ with 1 < |i| < k. This shows 7,(M) =
7y,(M) as representations of G. 0
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