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FIXED POINTS AND HOMOTOPY RESULTS FOR
CIRIC-TYPE MULTIVALUED OPERATORS
ON A SET WITH TWO METRICS

TANIA LAzZAR, DONAL O’REGAN, AND ADRIAN PETRUSEL

ABSTRACT. The purpose of this paper is to present some fixed point
results for nonself multivalued operators on a set with two metrics. In
addition, a homotopy result for multivalued operators on a set with two
metrics is given. The data dependence and the well-posedness of the fixed
point problem are also discussed.

1. Introduction

Throughout this paper, standard notations and terminologies in nonlinear
analysis (see [6], [12], [13]) are used. For the convenience of the reader we recall
some of them here.

Let (X, d) be a metric space. In the sequel we will use the following symbols:
P(X):={Y C X|Y is nonempty}, Py(X) :={Y € P(X)| Y is closed},

By(zo,7) := {z € X|d(20,z) < r}. If &' is another metric on X, we will denote
by Ei (zo,7) the closure of By(zo,r) in (X,d').

Let A be nonempty subset of the metric (X, d) and zo € X. Then Dgy(zg, A)
= D({zo}, A) is called the distance from the point zy to the set A.

The Pompeiu-Hausdorff generalized distance between the nonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:

Hy(A, B) = max{ilelg blng? d(a,b), ls)gg ;Ielg d(a,b)}.

The symbol T : X — X means T : X — P(X), i.e.,, T is a multivalued
operator from X to X. We will denote by G(T) := {(z,y) € X x X|y € T(x)}
the graph of T. The multivalued operator T is said to be closed if G(T) is
closed in X x X.
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For T : X — P(X) the symbol Fr := {z € X| z € T(z)} denotes the fixed
point set, while (SF)r = {z € X| {x} = T'(z)} is the strict fixed point set of
the multivalued operator T.

The aim of this paper is to present some fixed point results for nonself multi-
valued operators on a set with two metrics. In addition, a homotopy result for
multivalued operators on a set with two metrics is given. The data dependence
and the well-posedness of the fixed point problem are also discussed. Our re-
sults complement and extend some previous theorems given by R. P. Agarwal,
D. O'Regan [1], R. P. Agarwal, J. H. Dshalalow, D. O’Regan [2], L. Ciri¢ [3],
M. Frigon, A. Granas [5], S. Reich [10], etc.

2. Fixed points and homotopy results for Cirié-type multivalued
operators on a set with two metrics

Let (X, d) be a metric space and T : X — P, (X) be a multivalued operator.
For z,y € X, let us denote

M{ (z,y) := max{d(z,y), Da(z, T(2)), Da(y, T(¥)), 3[Da(z, T(y)) + Daly, T (x))]}.
A slight modified variant of Cirié’s theorem (see [3]) is the following:

Theorem 2.1. Suppose that the metric space (X, d) is complete and the mul-
tivalued operator T : X — P, (X) satisfies the following condition:

there exists a € [0, 1] such that Hy(T(z),T(y)) < a- M¥ (z,y) for each z,y € X.

Then Fr # 0 and for each x € X and each y € T(z) there exists a sequence
(Tn)nen such that

(1) mo ==, 1 =y;

(2) Zny1 € T(zp), n€N;

(3) zn = T(z*), as n — oo;

(4) d(zp,z*) < % -d(xo,21) for each n € N (where p €]1, L[ is arbitrary).

A data dependence result for Cirié-type multivalued operators is the follow-
ing theorem.

Theorem 2.2. Let (X,d) be a complete metric space and Ty, Ty : X — Py(X)
be two multivalued operators. Suppose that
(i) there exists a; € [0,1] such that
Ho(T(2), Ti(y)) < i - MT (s,), for each 2,y € X for i € {1,2);
(ii) there exists n > 0 such that Hy(Ti(x), Te(z)) <n for each x € X.
Then

n
P Fr, and Ho(Fr,, Fr,) < ———F——.
'r, # 0 # Fr, and Hy(Fr,, Fr,) < 1 — max{a1, oz}
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Proof. From Ciri¢’s theorem we have that Fr, #0 +# Fr,.

For our second conclusion, denote T := T—m—an_x{angT For our purpose it’s
enough to prove that for any u € Fr, there exists v € Fr, such that d(u,v) <Y
and a similar relation with the roles of Fr, and Fr, reversed.

Let u € Fr, be arbitrary. From (ii) for every ¢ > 1 there exists z; € Ta(u)
such that d(u, z1) < ¢H(T1(u), Ta(u)) < qn.

Using (4) for T» and taking n := 0, 2o := v and z; as above we have, by
Theorem 2.1, that there exists z} € Fr, such that

1
du,z23) < ————— - d(u,z1) < ———— - qn.
) S T ) S T o)
Letting p \, 1 we get that
d(u, x3) < T - qn.

By interchanging the roles of 7} and T3, for each v € Fr,, each q' > 1 and
each z; € Ty (v) such that d(v,zy) < ¢ H(T»(v), T2 (v)) < ¢'n we have that

d(U,ZBT) < qn,

1-— (&5}
where 27 is the fixed point of T} given by Theorem 2.1. Thus

T] ’
Hy(Fr,, Fr,) < . g}
a(Fry, Fr,) < 1 — max{ay, as} max{g,q }

The conclusion follows now by letting ¢,¢ \, 1. 0O

We continue the section with a local version of Cirié’s theorem on a set
with two metrics.

Theorem 2.3. Let X be a nonempty set, xg € X and r > 0. Suppose that d,

p are two metrics on X and T : EZ(ﬂcom) — P(X) is a multivalued operator.
We suppose that

(i) (X,d) is a complete metric space;
(ii) there exists ¢ > 0 such that d(z,y) < co(x,y) for each z,y € X;
(i) if d # p then T : Fz(xo,r) — P(XY) is closed, while if d = p then
T: E;(zo,r) — Py(X9%);
(iv) there ezists o € [0, 1] such that Hy(T(x),T(y)) < aM] (z,y) for each
(v) Dy(zo,T(z0)) < (1 — a)r.
Then 4
(A) there exists x* € Ep(aco,r) such that x* € T(z*);
B) if (SF)r # 0 and (z,)nen C Ei(mo,r) is such that H,(zy,T(2n)) — 0
as n — +oo, then z, > z € (SF)r as n — +oo (i.e., the fixed point problem
is well-posed in the generalized sense for T with respect to H,, see [7], [9]).
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Proof. (A) From (v) there exists 1 € T'(zo) such that p(xo,z1) < (1 — a)r.
Clearly =, € ?Z(z‘o,r). We have

Hy(T (o), T (21))

< amax{p(zo, 1), Dp(xo, T(x0)), Dp(x1, T(x1)),
1

5 [Dp(@0, T(21)) + Dp(@1, T (w0))]}

1
< ama’x{p(x()?xl)?Dp(xlaT(xl))a 5[9(1'0,1'1) + Dp(ﬂ?l,T(l‘1))]}
< amax{p(zo, z1), Dp(z1, T(21))}-
We claim that max{p(zo,z1), Dp(z1,T(z1))} = p(zo, z1). If
max{p(xo,21), Dp(x1, T(#1))} = Dp(z1,T(21)),
then we get the following contradiction H,(T(zo), T(z1)) < aD,(z1,T(z1)) <
oH,(T(z0),T(2z1)). Thus
Hy(T(x0), T(x1)) < ap(o,21)-
Hence H,(T(z0),T(z1)) < a(l — a)r. Thus, there exists x2 € T(z1) such
that p(z1,z2) < a(l — a)r. Moreover, p(zo,z2) < p(zo,z1) + p(z1,22) <
1-a)yr+all —a)yr =(1-a?)r <r. Hence, 22 € FZ(xo,r). Using this
procedure, we obtain the sequence (zp)nen C Eﬁ(zo,r) having the following
properties:
(a) tnt1 € T(zn),n €N;
(b) p(Tn=-1,2n) < a™ 11— a)r,n € N*;
(¢) p(zo,zn) < (1 —a™)r,n € N*.

From (b) we get that the sequence (zn)nen is Cauchy in (X, p). From
(ii) the sequence (zp)nen is Cauchy in (X,d) too. Taking into account (i) it
follows that there exists z* € EZ(.’L‘(),T) such that z, 5 z*. If d # p, since
T:B »(T9,7) — Pg(X?) is closed, we immediately get that z* € T(xz*), as

n — oo. If d = p the conclusion follows as in the proof of Cirié¢’s theorem (see
[3]; Theorem 2 as well as [2]).
(B) Let z € (SF)r. Thus we have:

p(Tn,; T)
< Dy(n, T(zn)) + Hp(T(24), T(x)) < Dp(@n, T(wn)) + @M, (2n,2)
Dp(n, T(xn)) + o - max{p(zn, z), Dp(n, T(n)), 3[Dp(@n, T(x))+Dy(z, T(2n))]}
Dp(@n, T(zn)) + o - max{p(zn, z), Dp(@n, T(n)), p(@n, ) + 5Dp(xn, T(xn)}
S Dp( ns T(Zn)) + o - max{Dy(@n, T(2n)), p(&n, z) + 5D p(@n, T(zs)}-
Hence, we get that

plzn, ) < max{1l+ a, }Do(2n, T(xn) \, 0 as n — o0.

a
2(1-a)
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The proof is complete. O

Remark 2.1. Theorem 2.3 holds if the condition (ii) is replaced by:

(i") if p # d then for each ¢ > 0 there exists & > 0 such that for each
z,y € Ei(mo,r) with p(z,y) < § we have d(u,v) < ¢, for each v € T(x) and
veT(y).

A homotopy result for Cirié—type multivalued operators on a set with two
metrics is the following theorem.

Theorem 2.4. Let (X,d) be a complete metric space and p another metric on
X such that there exists ¢ > 0 with d(z,y) < cp(z,y) for each z,y € X. Let
U be an open subset of (X, p) and V be a closed subset of (X,d), withU C V.
Let G : V x [0,1] — P(X) be a multivalued operator such that the following
conditions are satisfied:

(a) z ¢ G(z,t) for each z € V\ U and each t € [0, 1];
(b) there exists a € [0,1], such that for each t € [0,1] and each z,y € V we
have:

H,(G(z,1),G(y, 1)) < aM (2, y);
(c) there exists a continuous increasing function ¢ : [0,1] — R such that
H,(G(z,t),G(z,s)) < |o(t) — ¢(s)| for all t,s € [0,1] and each x € V;
(d) G:V x[0,1] > P((X,d)) is closed.
Then G(-,0) has a fized point if and only if G(-,1) has a fixed point.
Proof. Suppose G(-,0) has a fixed point z. From (a) we have that z € U.
Define
Q:={{t,x) €[0,1] xU| z € G(z,t)}.

Clearly @ # 0, since (0,2) € Q. Consider on @ a partial order defined as
follows:

2
(t,z) < (s,y) if and only if ¢ < s and p(z,y) < 1o [9(s) — #(B)]-
Let M be a totally ordered subset of @ and consider t* := sup{¢|(¢,z) € M}.

Consider a sequence (tn,Zn)nen» C M such that (tn,2n) < (tp+1, Zny1) and
t, — t*, asn — +o00. Then

AT, @) < - [@(tm) — ¢(tn)] for each m,n € N*,m > n.

T 1l-a
When m,n — +o0o we obtain p(Zm,,zn) — 0 and so (@p)nen+ is p-Cauchy.
Thus (z)nen~ is d-Cauchy too. Denote by z* € (X,d) its lmit. Since z, €
G(zp,tn),n € N* and G is d-closed we have z* € G(z*,t*). Also, from (a)
we have z* € U. Hence (t*,2*) € . Since M is totally ordered we get
(t,z) < (t*,z) for each (t,z) € M. Thus (t*,z*) is an upper bound of M.
Hence Zorn’s Lemma applies and @ admits a maximal element (tg,z) € Q.
We claim that ¢ = 1. This will finish the first part of the proof.
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Suppose tg < 1. Choose r > 0 and ¢ €]tg, 1] such that B,(zg,7) C U and
r:= 1% - [#(t) ~ ¢(to)]. Then
D@0, G(z0,1)) < Dp(w0, G(20, t0)) + Hp(G(x0, o), G(o, t))

1—a)r
< 16)—6(t0) = L5 < (1
Since —Ei(wo, r) C V, the multivalued operator G(-,t) : Fﬁ(wo, 7} — Py(X)
satisfies, for all ¢ € [0,1], the assumptions of Theorem 2.3. Hence, for all
t € [0,1], there exists z € Fi(wo,r) such that € G(z,t). Thus (t,z) € Q.
Since

p(20,2) S 7 = T2 [6(1) = 9lt0)

we immediately get (to, o) < (¢,z). This is a contradiction with the maximal-
ity of (to, o).

Conversely, if G(+,1) has a fixed point, then putting ¢ := 1 —¢ and using first
part of the proof we get the conclusion. O

A special case of Theorem 2.4 is when d = p.

Corollary 2.1. Let (X,d) be a complete metric space, U be an open subset of
X and 'V be a closed subset of X, withU C V. Let G: V x[0,1] - P(X) be a
closed multivalued operator such that the following conditions are satisfied:
(a) x ¢ G(z,t), for each z € V\ U and each t € [0,1];
(b) there exists a € [0,1], such that for each t € [0,1] and each 2,y € V we
have
Ha(G(2,1), G(y, 1) < oMy (z,y);
(c) there exists a continuous increasing function ¢ : [0,1] — R such that
Hy(G(z,t), G(x,s)) < |o(t) — ¢(s)| for all t,5 €[0,1] and each z € V.
Then G(-,0) has a fixed point if and only if G(-,1) has a fized point.

Remark 2.2. Usually in Corollary 2.1 we take Q = U. Notice that in this case
condition (a) becomes:
(@) = ¢ G(z,t), for each z € U and each t € [0,1].
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