FIXED POINTS AND HOMOTOPY RESULTS FOR ĆIRIĆ-TYPE MULTIVALUED OPERATORS ON A SET WITH TWO METRICS

TANIA LAZĂR, DONAL O'REGAN, AND ADRIAN PETRUŞEL

ABSTRACT. The purpose of this paper is to present some fixed point results for nonself multivalued operators on a set with two metrics. In addition, a homotopy result for multivalued operators on a set with two metrics is given. The data dependence and the well-posedness of the fixed point problem are also discussed.

1. Introduction

Throughout this paper, standard notations and terminologies in nonlinear analysis (see [6], [12], [13]) are used. For the convenience of the reader we recall some of them here.

Let (X, d) be a metric space. In the sequel we will use the following symbols:

$$P(X) := \{Y \subset X | Y \text{ is nonempty}\}, P_{cl}(X) := \{Y \in P(X) | Y \text{ is closed}\},$$

 $B_d(x_0,r) := \{x \in X | d(x_0,x) < r\}$. If d' is another metric on X, we will denote by $\overline{B}_d^{d'}(x_0,r)$ the closure of $B_d(x_0,r)$ in (X,d').

Let A be nonempty subset of the metric (X, d) and $x_0 \in X$. Then $D_d(x_0, A) = D(\{x_0\}, A)$ is called the distance from the point x_0 to the set A.

The Pompeiu-Hausdorff generalized distance between the nonempty closed subsets A and B of the metric space (X,d) is defined by the following formula:

$$H_d(A,B) := \max\{\sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b)\}.$$

The symbol $T: X \multimap X$ means $T: X \to P(X)$, i.e., T is a multivalued operator from X to X. We will denote by $G(T) := \{(x,y) \in X \times X | y \in T(x)\}$ the graph of T. The multivalued operator T is said to be closed if G(T) is closed in $X \times X$.

Received May 2, 2007; Revised November 3, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25, 47H04.

Key words and phrases. set with two metrics, multivalued operator, fixed point, well-posed fixed point problem, generalized contraction, data dependence.

For $T: X \to P(X)$ the symbol $F_T := \{x \in X \mid x \in T(x)\}$ denotes the fixed point set, while $(SF)_T := \{x \in X | \{x\} = T(x)\}$ is the strict fixed point set of the multivalued operator T.

The aim of this paper is to present some fixed point results for nonself multivalued operators on a set with two metrics. In addition, a homotopy result for multivalued operators on a set with two metrics is given. The data dependence and the well-posedness of the fixed point problem are also discussed. Our results complement and extend some previous theorems given by R. P. Agarwal, D. O'Regan [1], R. P. Agarwal, J. H. Dshalalow, D. O'Regan [2], L. Ĉirić [3], M. Frigon, A. Granas [5], S. Reich [10], etc.

2. Fixed points and homotopy results for Ciric-type multivalued operators on a set with two metrics

Let (X, d) be a metric space and $T: X \to P_{cl}(X)$ be a multivalued operator. For $x, y \in X$, let us denote

$$M_d^T(x,y) := \max\{d(x,y), D_d(x,T(x)), D_d(y,T(y)), \tfrac{1}{2}[D_d(x,T(y)) + D_d(y,T(x))]\}.$$

A slight modified variant of Ćirić's theorem (see [3]) is the following:

Theorem 2.1. Suppose that the metric space (X,d) is complete and the multivalued operator $T: X \to P_{cl}(X)$ satisfies the following condition:

there exists $\alpha \in [0,1]$ such that $H_d(T(x),T(y)) \leq \alpha \cdot M_d^T(x,y)$ for each $x,y \in X$.

Then $F_T \neq \emptyset$ and for each $x \in X$ and each $y \in T(x)$ there exists a sequence $(x_n)_{n\in\mathbb{N}}$ such that

- (1) $x_0 = x$, $x_1 = y$;
- (2) $x_{n+1} \in T(x_n), n \in \mathbb{N};$
- (3) $x_n \stackrel{d}{\to} x^* \in T(x^*)$, as $n \to \infty$; (4) $d(x_n, x^*) \le \frac{(\alpha p)^n}{1 \alpha p} \cdot d(x_0, x_1)$ for each $n \in \mathbb{N}$ (where $p \in]1, \frac{1}{\alpha}[$ is arbitrary).

A data dependence result for Ćirić-type multivalued operators is the following theorem.

Theorem 2.2. Let (X,d) be a complete metric space and $T_1, T_2: X \to P_{cl}(X)$ be two multivalued operators. Suppose that

(i) there exists $\alpha_i \in [0,1]$ such that

$$H_d(T_i(x), T_i(y)) \le \alpha_i \cdot M_d^{T_i}(x, y)$$
, for each $x, y \in X$ for $i \in \{1, 2\}$;

(ii) there exists $\eta > 0$ such that $H_d(T_1(x), T_2(x)) \leq \eta$ for each $x \in X$. Then

$$F_{T_1} \neq \emptyset \neq F_{T_2} \text{ and } H_d(F_{T_1}, F_{T_2}) \leq \frac{\eta}{1 - \max\{\alpha_1, \alpha_2\}}.$$

Proof. From Ćirić's theorem we have that $F_{T_1} \neq \emptyset \neq F_{T_2}$.

For our second conclusion, denote $\Upsilon:=\frac{\eta}{1-\max\{\alpha_1,\alpha_2\}}$. For our purpose it's enough to prove that for any $u \in F_{T_1}$ there exists $v \in F_{T_2}$ such that $d(u,v) \leq \Upsilon$ and a similar relation with the roles of F_{T_1} and F_{T_2} reversed.

Let $u \in F_{T_1}$ be arbitrary. From (ii) for every q > 1 there exists $x_1 \in T_2(u)$ such that $d(u, x_1) \leq qH(T_1(u), T_2(u)) \leq q\eta$.

Using (4) for T_2 and taking n := 0, $x_0 := u$ and x_1 as above we have, by Theorem 2.1, that there exists $x_2^* \in F_{T_2}$ such that

$$d(u, x_2^*) \le \frac{1}{1 - (\alpha_2 p)} \cdot d(u, x_1) \le \frac{1}{1 - (\alpha_2 p)} \cdot q\eta.$$

Letting $p \setminus 1$ we get that

$$d(u, x_2^*) \le \frac{1}{1 - \alpha_2} \cdot q\eta.$$

By interchanging the roles of T_1 and T_2 , for each $v \in F_{T_2}$, each q' > 1 and each $x_1' \in T_1(v)$ such that $d(v, x_1') \leq q' H(T_2(v), T_1(v)) \leq q' \eta$ we have that

$$d(v, x_1^*) \le \frac{1}{1 - \alpha_1} \cdot q' \eta,$$

where x_1^* is the fixed point of T_1 given by Theorem 2.1. Thus

$$H_d(F_{T_1}, F_{T_2}) \leq \frac{\eta}{1 - \max\{\alpha_1, \alpha_2\}} \cdot \max\{q, q^{'}\}.$$

The conclusion follows now by letting $q, q' \setminus 1$.

We continue the section with a local version of Ćirić's theorem on a set with two metrics.

Theorem 2.3. Let X be a nonempty set, $x_0 \in X$ and r > 0. Suppose that d, ρ are two metrics on X and $T: \overline{B}_{\rho}^{d}(x_{0}, r) \to P(X)$ is a multivalued operator. We suppose that

- (i) (X,d) is a complete metric space;
- (ii) there exists c > 0 such that $d(x, y) \le c\rho(x, y)$ for each $x, y \in X$;
- (iii) if $d \neq \rho$ then $T: \overline{B}^d_{\rho}(x_0,r) \rightarrow P(X^d)$ is closed, while if $d=\rho$ then $T: \overline{B}_d^d(x_0, r) \to P_{cl}(X^d);$ (iv) there exists $\alpha \in [0, 1[$ such that $H_{\rho}(T(x), T(y)) \leq \alpha M_{\rho}^T(x, y)$ for each
- $x, y \in \overline{B}_{o}^{d}(x_{0}, r);$
- (v) $D_{\rho}(x_0, T(x_0)) < (1 \alpha)r$.

- (A) there exists $x^* \in \overline{B}^d_{\rho}(x_0, r)$ such that $x^* \in T(x^*)$;
- (B) if $(SF)_T \neq \emptyset$ and $(x_n)_{n \in \mathbb{N}} \subset \overline{B}_{\rho}^d(x_0, r)$ is such that $H_{\rho}(x_n, T(x_n)) \to 0$ as $n \to +\infty$, then $x_n \stackrel{\rho}{\to} x \in (SF)_T$ as $n \to +\infty$ (i.e., the fixed point problem is well-posed in the generalized sense for T with respect to H_{ρ} , see [7], [9]).

Proof. (A) From (v) there exists $x_1 \in T(x_0)$ such that $\rho(x_0, x_1) < (1 - \alpha)r$. Clearly $x_1 \in \overline{B}_{\rho}^d(x_0, r)$. We have

$$\begin{split} H_{\rho}(T(x_0),T(x_1)) \\ &\leq \alpha \max\{\rho(x_0,x_1),D_{\rho}(x_0,T(x_0)),D_{\rho}(x_1,T(x_1)),\\ &\frac{1}{2}[D_{\rho}(x_0,T(x_1))+D_{\rho}(x_1,T(x_0))]\} \\ &\leq \alpha \max\{\rho(x_0,x_1),D_{\rho}(x_1,T(x_1)),\frac{1}{2}[\rho(x_0,x_1)+D_{\rho}(x_1,T(x_1))]\} \\ &\leq \alpha \max\{\rho(x_0,x_1),D_{\rho}(x_1,T(x_1))\}. \end{split}$$

We claim that $\max\{\rho(x_0, x_1), D_{\rho}(x_1, T(x_1))\} = \rho(x_0, x_1)$. If

$$\max\{\rho(x_0,x_1),D_{\rho}(x_1,T(x_1))\}=D_{\rho}(x_1,T(x_1)),$$

then we get the following contradiction $H_{\rho}(T(x_0), T(x_1)) \leq \alpha D_{\rho}(x_1, T(x_1)) \leq \alpha H_{\rho}(T(x_0), T(x_1))$. Thus

$$H_{\rho}(T(x_0), T(x_1)) \le \alpha \rho(x_0, x_1).$$

Hence $H_{\rho}(T(x_0),T(x_1))<\alpha(1-\alpha)r$. Thus, there exists $x_2\in T(x_1)$ such that $\rho(x_1,x_2)<\alpha(1-\alpha)r$. Moreover, $\rho(x_0,x_2)\leq \rho(x_0,x_1)+\rho(x_1,x_2)<(1-\alpha)r+\alpha(1-\alpha)r=(1-\alpha^2)r< r$. Hence, $x_2\in \overline{B}^d_{\rho}(x_0,r)$. Using this procedure, we obtain the sequence $(x_n)_{n\in\mathbb{N}}\subset \overline{B}^d_{\rho}(x_0,r)$ having the following properties:

- (a) $x_{n+1} \in T(x_n), n \in \mathbb{N};$
- (b) $\rho(x_{n-1}, x_n) \le \alpha^{n-1} (1 \alpha) r, n \in \mathbb{N}^*;$
- (c) $\rho(x_0, x_n) \leq (1 \alpha^n)r, n \in \mathbb{N}^*$.

From (b) we get that the sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy in (X,ρ) . From (ii) the sequence $(x_n)_{n\in\mathbb{N}}$ is Cauchy in (X,d) too. Taking into account (i) it follows that there exists $x^*\in \overline{B}^d_\rho(x_0,r)$ such that $x_n\stackrel{d}{\to} x^*$. If $d\neq \rho$, since $T:\overline{B}^d_\rho(x_0,r)\to P_{cl}(X^d)$ is closed, we immediately get that $x^*\in T(x^*)$, as $n\to\infty$. If $d=\rho$ the conclusion follows as in the proof of Ćirić's theorem (see [3], Theorem 2 as well as [2]).

(B) Let $x \in (SF)_T$. Thus we have:

$$\rho(x_n,x)$$

$$\leq D_{\rho}(x_n, T(x_n)) + H_{\rho}(T(x_n), T(x)) \leq D_{\rho}(x_n, T(x_n)) + \alpha M_{\rho}^T(x_n, x)$$

$$\leq D_{\rho}(x_n, T(x_n)) + \alpha \cdot \max\{\rho(x_n, x), D_{\rho}(x_n, T(x_n)), \frac{1}{2}[D_{\rho}(x_n, T(x)) + D_{\rho}(x, T(x_n))]\}$$

$$\leq D_{\rho}(x_n, T(x_n)) + \alpha \cdot \max\{\rho(x_n, x), D_{\rho}(x_n, T(x_n)), \rho(x_n, x) + \frac{1}{2}D_{\rho}(x_n, T(x_n))\}$$

$$\leq D_{\rho}(x_n, T(x_n)) + \alpha \cdot \max\{D_{\rho}(x_n, T(x_n)), \rho(x_n, x) + \frac{1}{2}D_{\rho}(x_n, T(x_n))\}.$$

Hence, we get that

$$\rho(x_n, x) \le \max\{1 + \alpha, \frac{\alpha}{2(1 - \alpha)}\}D_{\rho}(x_n, T(x_n) \setminus 0 \text{ as } n \to \infty.$$

The proof is complete.

Remark 2.1. Theorem 2.3 holds if the condition (ii) is replaced by:

(ii') if $\rho \not\geq d$ then for each $\epsilon > 0$ there exists $\delta > 0$ such that for each $x, y \in \overline{B}_{\rho}^{d}(x_{0}, r)$ with $\rho(x, y) < \delta$ we have $d(u, v) < \epsilon$, for each $u \in T(x)$ and $v \in T(y)$.

A homotopy result for Ćirić-type multivalued operators on a set with two metrics is the following theorem.

Theorem 2.4. Let (X,d) be a complete metric space and ρ another metric on X such that there exists c>0 with $d(x,y)\leq c\rho(x,y)$ for each $x,y\in X$. Let U be an open subset of (X,ρ) and V be a closed subset of (X,d), with $U\subset V$. Let $G:V\times [0,1]\to P(X)$ be a multivalued operator such that the following conditions are satisfied:

- (a) $x \notin G(x,t)$ for each $x \in V \setminus U$ and each $t \in [0,1]$;
- (b) there exists $\alpha \in [0,1[$, such that for each $t \in [0,1]$ and each $x,y \in V$ we have:

$$H_{\rho}(G(x,t),G(y,t)) \le \alpha M_{\rho}^{G(\cdot,t)}(x,y);$$

(c) there exists a continuous increasing function $\phi:[0,1]\to\mathbb{R}$ such that

$$H_{\rho}(G(x,t),G(x,s)) \leq |\phi(t)-\phi(s)|$$
 for all $t,s \in [0,1]$ and each $x \in V$;

(d) $G: V \times [0,1] \rightarrow P((X,d))$ is closed.

Then $G(\cdot,0)$ has a fixed point if and only if $G(\cdot,1)$ has a fixed point.

Proof. Suppose $G(\cdot,0)$ has a fixed point z. From (a) we have that $z\in U.$ Define

$$Q := \{(t, x) \in [0, 1] \times U | x \in G(x, t)\}.$$

Clearly $Q \neq \emptyset$, since $(0, z) \in Q$. Consider on Q a partial order defined as follows:

$$(t,x) \le (s,y)$$
 if and only if $t \le s$ and $\rho(x,y) \le \frac{2}{1-\alpha} \cdot [\phi(s) - \phi(t)]$.

Let M be a totally ordered subset of Q and consider $t^* := \sup\{t | (t, x) \in M\}$. Consider a sequence $(t_n, x_n)_{n \in \mathbb{N}^*} \subset M$ such that $(t_n, x_n) \leq (t_{n+1}, x_{n+1})$ and $t_n \to t^*$, as $n \to +\infty$. Then

$$\rho(x_m, x_n) \leq \frac{2}{1-\alpha} \cdot [\phi(t_m) - \phi(t_n)] \text{ for each } m, n \in \mathbb{N}^*, m > n.$$

When $m, n \to +\infty$ we obtain $\rho(x_m, x_n) \to 0$ and so $(x_n)_{n \in \mathbb{N}^*}$ is ρ -Cauchy. Thus $(x_n)_{n \in \mathbb{N}^*}$ is d-Cauchy too. Denote by $x^* \in (X, d)$ its limit. Since $x_n \in G(x_n, t_n), n \in \mathbb{N}^*$ and G is d-closed we have $x^* \in G(x^*, t^*)$. Also, from (a) we have $x^* \in U$. Hence $(t^*, x^*) \in Q$. Since M is totally ordered we get $(t, x) \leq (t^*, x^*)$ for each $(t, x) \in M$. Thus (t^*, x^*) is an upper bound of M. Hence Zorn's Lemma applies and Q admits a maximal element $(t_0, x_0) \in Q$. We claim that $t_0 = 1$. This will finish the first part of the proof.

Suppose $t_0 < 1$. Choose r > 0 and $t \in]t_0, 1]$ such that $B_{\rho}(x_0, r) \subset U$ and $r := \frac{2}{1-\alpha} \cdot [\phi(t) - \phi(t_0)]$. Then

$$D_{\rho}(x_0, G(x_0, t)) \le D_{\rho}(x_0, G(x_0, t_0)) + H_{\rho}(G(x_0, t_0), G(x_0, t))$$

$$\le [\phi(t) - \phi(t_0)] = \frac{(1 - \alpha)r}{2} < (1 - \alpha)r.$$

Since $\overline{B}_{\rho}^{d}(x_{0},r)\subset V$, the multivalued operator $G(\cdot,t):\overline{B}_{\rho}^{d}(x_{0},r)\to P_{cl}(X)$ satisfies, for all $t\in[0,1]$, the assumptions of Theorem 2.3. Hence, for all $t\in[0,1]$, there exists $x\in\overline{B}_{\rho}^{d}(x_{0},r)$ such that $x\in G(x,t)$. Thus $(t,x)\in Q$. Since

$$\rho(x_0, x) \le r = \frac{2}{1 - \alpha} \cdot [\phi(t) - \phi(t_0)],$$

we immediately get $(t_0, x_0) < (t, x)$. This is a contradiction with the maximality of (t_0, x_0) .

Conversely, if $G(\cdot, 1)$ has a fixed point, then putting t := 1 - t and using first part of the proof we get the conclusion.

A special case of Theorem 2.4 is when $d = \rho$.

Corollary 2.1. Let (X, d) be a complete metric space, U be an open subset of X and V be a closed subset of X, with $U \subset V$. Let $G: V \times [0, 1] \to P(X)$ be a closed multivalued operator such that the following conditions are satisfied:

- (a) $x \notin G(x,t)$, for each $x \in V \setminus U$ and each $t \in [0,1]$;
- (b) there exists $\alpha \in [0,1[$, such that for each $t \in [0,1]$ and each $x,y \in V$ we have

$$H_d(G(x,t),G(y,t)) \le \alpha M_d^{G(\cdot,t)}(x,y);$$

(c) there exists a continuous increasing function $\phi:[0,1]\to\mathbb{R}$ such that

$$H_d(G(x,t),G(x,s)) \leq |\phi(t)-\phi(s)|$$
 for all $t,s \in [0,1]$ and each $x \in V$.

Then $G(\cdot,0)$ has a fixed point if and only if $G(\cdot,1)$ has a fixed point.

Remark 2.2. Usually in Corollary 2.1 we take $Q = \overline{U}$. Notice that in this case condition (a) becomes:

(a') $x \notin G(x,t)$, for each $x \in \partial U$ and each $t \in [0,1]$.

References

- R. P. Agarwal and D. O'Regan, Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000), no. 2, 402-414.
- [2] R. P. Agarwal, J. H. Dshalalow, and D. O'Regan, Fixed point and homotopy results for generalized contractive maps of Reich type, Appl. Anal. 82 (2003), no. 4, 329–350.
- [3] L. B. Ćirić, Fixed points for generalized multi-valued contractions, Mat. Vesnik 9(24) (1972), 265-272.
- [4] H. Covitz and S. B. Jr. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5-11.
- [5] M. Frigon and A. Granas, Résultats du type de Leray-Schauder pour des contractions multivoques, Topol. Methods Nonlinear Anal. 4 (1994), no. 1, 197-208.

- [6] A. Petruşel, Generalized multivalued contractions, Nonlinear Anal. 47 (2001), no. 1, 649-659.
- [7] A. Petruşel and I. A. Rus, Well-posedness of the fixed point problem for multivalued operators, Applied analysis and differential equations, 295–306, World Sci. Publ., Hackensack, NJ, 2007.
- [8] _____, Fixed point theory for multivalued operators on a set with two metrics, Fixed Point Theory 8 (2007), no. 1, 97-104.
- [9] A. Petruşel, I. A. Rus, and J.-C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J. Math. 11 (2007), no. 3, 903-914
- [10] S. Reich, Fixed points of contractive functions, Boll. Un. Mat. Ital. (4) 5 (1972), 26-42.
- [11] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
- [12] I. A. Rus, A. Petruşel, and G. Petruşel, Fixed Point Theory: 1950-2000. Romanian Contributions, House of the Book of Science, Cluj-Napoca, 2002.
- [13] I. A. Rus, A. Petruşel, and A. Sîntămărian, Data dependence of the fixed point set of some multivalued weakly Picard operators, Nonlinear Anal. 52 (2003), no. 8, 1947–1959.

TANIA LAZĂR

COMMERCIAL ACADEMY SATU-MARE
MIHAI EMINESCU 6, SATU-MARE, ROMANIA
E-mail address: tanialazar@yahoo.com

DONAL O'REGAN
DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF IRELAND
GALWAY, IRELAND
E-mail address: donal.oregan@nuigalway.ie

ADRIAN PETRUŞEL
DEPARTMENT OF APPLIED MATHEMATICS
BABEŞ-BOLYAI UNIVERSITY CLUJ-NAPOCA
KOGĂLNICEANU 1, 400084, CLUJ-NAPOCA, ROMANIA
E-mail address: petrusel@math.ubbcluj.ro