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CLASSIFICATION OF TREES EACH OF WHOSE
ASSOCIATED ACYCLIC MATRICES WITH DISTINCT
DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES

IN-JAE KiMm AND BRYAN L. SHADER

ABSTRACT. It is known that each eigenvalue of a real symmetric, irre-
ducible, tridiagonal matrix has multiplicity 1. The graph of such a matrix
is a path. In this paper, we extend the result by classifying those trees
for which each of the associated acyclic matrices has distinct eigenvalues
whenever the diagonal entries are distinct.

1. Introduction

Throughout all matrices are real. We refer a reader to [2] for basic graph
theoretic terminology. Let A = [a;;] be an n by n symmetric matrix. If A
has k distinct eigenvalues with multiplicities mi > ms > --- > my, then
(m1,ma,...,my) is the unordered multiplicity list of the eigenvalues of A. If
an eigenvalue A of A has multiplicity 1, then A is a simple eigenvalue of A.
The graph of A, denoted by G(A), consists of the vertices 1,2,...,n, and the
edges {i,j} for which ¢ # j and a;; # 0. Note that G(A) does not depend on
the diagonal entries of A. If G(A) is a tree, then A is an irreducible, acyclic
matrix.

Further, for a given graph G on n vertices, define S(G) to be the set of all
n by n symmetric matrices with graph G, i.e.,

S(G) ={Anxn | Ais symmetric and G(4) =G }.
The spectrum of S(G) is the set of all spectra realized by some matrix in S(G).
The unordered multiplicity list of S(G) is the set of all unordered multiplicity
lists realized by some matrix in S(G).

It is known that for a tree T', some combinatorial properties of T are reflected
in the spectrum of S(T'), and hence impose restrictions on the unordered mul-
tiplicity list of S(T") (see [4, 1]). For example, the maximum multiplicity of an
eigenvalue of a matrix in S(7T') is the minimum number of disjoint paths in T
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covering all of the vertices of T. Thus, for a given tree T, it can be shown that T
is a path if and only if the unordered multiplicity list of S(T) is {(1,1,...,1)}.
This implies that if G(A) is a path, then the symmetric, irreducible, tridiag-
onal matrix A has only simple eigenvalues regardless of the diagonal entries.
A problem related to this fact is the existence of other trees T for which each
associated acyclic matrix with some restrictions on the diagonal entries has the
unordered multiplicity list (1,1,...,1). For a given graph, define

SD(G) ={A=la;;] € S(G) | ass # ay for s # ¢ }.

In this note, we classify the trees T such that every matrix in $D(T) has only
simple eigenvalues.

2. Main results

We first provide necessary terms and a known result. Let T be a tree, and
let v be a vertex of T. Then T \ {v} is the induced subgraph obtained by
deleting vertex v and all incident edges to v. Each connected component of
T\ {v} is called a branch of T at v. Note that each branch of T at v is a tree.
If the degree of v is k, then there are k branches of T at v. Let A € S(T),
and B be a branch of T" at v. Then A(v) denotes the principal submatrix of A
whose graph is T'\ {v}, and A[B] denotes the principal submatrix of A obtained
by retaining rows and columns indexed by the vertices of B. If By, Ba,..., By
are the branches of T at v, then A(v) is, up to permutation similarity, equal
to A[B1] @ A[Ba] @ - -+ & A[Bi]. The multiplicity of an eigenvalue A of A is
denoted by ma(A). If A = 0, then m4(A) is the nullity v(A) of A. It is a
simple consequence of linear algebra that v(A4) > v(A(v)) — 1. Moreover, by
the Cauchy Interlacing Theorem (see [3, Theorem 4.3.8]), m4()) and m 4, (A)
differ by at most one. If m 4¢,)(A) = ma(X) + 1, vertex v is a Parter-vertezx of
A for A (see [5]). If G(A) is a tree, then we have the following result.

Lemma 2.1 (Parter-Wiener Theorem, [5]). Let A be an irreducible, acyclic
matriz, and let X be an eigenvalue of A with ma(\) > 2. Then there exists a
Parter-vertez v of A for X such that X\ is an eigenvalue of at least three of the
direct summands of A(v).

The following result along with Lemma 2.4 gives the characterization of the
trees T' for which each matrix in SD(T) has distinct eigenvalues.

Theorem 2.2. Let T be a tree that is not a path. Then each matriz in SD(T)
has distinct eigenvalues if and only if each vertex of degree 3 or more in T has
at most one branch which is not o pendant vertex.

To prove Theorem 2.2, we first establish the following lemma.

Lemma 2.3. Let T be a tree on n vertices for n > 2. Then there exists a
singular matriz in SD(T) with oll nonzero diagonal entries.
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Proof. Let L = [£;;] be the Laplacian matrix of T (see [2]). Then L € S(T).
Since n > 2 and T is connected, L is singular and ¢;; > 0 for each i = 1,...,n.
Let D = diag(dy,...,dn) with d; # 0 for each j = 1,...,n such that d3¢;; >
d3la2 > -+ > d20,, >0, and let A= DLD. Then A is a singular matrix with
nonzero diagonal entries in SD(T). U

Proof of Theorem 2.2. Let T be a tree that is not a path. For sufficiency,
assume that each of vertices of degree 3 or more in 7" has at most one branch
which is not a pendant vertex, and A € SD(T). Suppose to the contrary
that there exists an eigenvalue A of A with ma(\) > 2. Then, by Lemma
2.1, there exists a Parter-vertex v of A for A such that at least three of the
direct summands of A(v) have X as an eigenvalue. This implies that at least
two diagonal entries of A are A\. This contradicts that A has distinct diagonal
entries.

For necessity, suppose to the contrary that there exists a vertex v of degree
3 or more having at least two branches which are not pendant vertices. Let
k denote the degree of v, and By, ..., By be the branches of T at v. Assume
that there are exactly two branches of T at v which are not pendant vertices,
say By, Ba. Then Bs, ..., By are pendant vertices of T. By Lemma 2.3, there
is a singular matrix A; without any zero diagonal entries in SD(B;) for each
J = 1,2. Moreover, by using the construction in Lemma 2.3, we can construct
A1, Ay such that the diagonal entries of A;, A, are nonzero, distinct, real num-
bers. We now construct a matrix A = [a;;] in SD(T) such that A[B;] = A; for
J=1,2, A[B3] =0, ass # ay for s # t, and the other entries, not yet assigned
any value, are 1. Since there are exactly 3 singular summands A[B], A[Bs],
and A[B3] of A(v), it follows that v(A(v)) = 3. Since v(4) > v(A(v)) — 1, it
follows that v(A) > 2. Hence, not all of the eigenvalues of A are simple.

Next assume that there are at least three branches of 7' at v which are
not pendant vertices of T, and B, Bz, B; are three of them. As before, we
construct a matrix 4 in SD(T) such that A[B;]’s are singular matrices with
no zero diagonal entries and A[B;] € SD(B;) for j = 1,2,3, and ass # ay
for s # t, and the other entries, not yet assigned any value, are 1. Then,
since there are at least 3 singular summands A[B;], A[Bz], and A[B3] of A(v),
v(A(v)) > 3. Since v(A) > v(A(v)) — 1, it follows that v(4) > 2. Hence, the
result follows. O

We now turn our attention to characterize the trees for which each vertex
of degree 3 or more has at most one branch which is not a pendant vertex.

Lemma 2.4. Let T be a tree. If each vertex of degree 3 or more in T has
at most one branch which is not a pendant vertex, then there are at most two
vertices of degree 3 or more in T.

Proof. Suppose to the contrary that T has at least three vertices of degree 3 or
more. Let u,v,w be vertices of degree 3 or more in T. Since T is a tree, there
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exists a pair of vertices v1,v2 in {u,v, w} such that the path P connecting v;
and vz does not pass through vertex v3 € {u,v, w} \ {v1,v2}.

Since the branch of T at v (resp. v2) containing vertex vy (resp. vertex vi)
is a non-pendant branch, by the assumption, the path connecting v1 and v;
shares a vertex y, which is neither v; nor v, with the path P. Thus, deg(y) > 3
and there exist at least two branches of T at y that are not pendant vertices.
This contradicts the assumption. O

The following is a direct consequence of Theorem 2.2 and Lemma, 2.4.

Corollary 2.5. Let T be a tree. Then each matriz in SD(T) has distinct
eigenvalues if and only if T is one of the following trees:

(1) No vertex of degree 3 or more (Paths) :

(2) One vertex of degree 3 or more:
(2a) No branch which is not a pendant vertex (Stars) :

(2b) One branch which is not a pendant vertez:

N
>

(3) Two vertices of degree 3 or more:

NI
=
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Example 2.6. Consider the following tree T and A € SD(T') :

1 6
3 4 5
7
2 8
a1 0 b6 0 0 0 0 O }
0 az b 0 0 0 O O
bl b2 as b3 0 0 0 0
A= 0 0 bg a4 b4 0 0 0
o 0 0 0 b4 as b5 b6 b? ’
6 0 0 0 b a 0 O
6 0 0 0 b 0 a7 O
L 0 0 0 0 b 0 0 as |

where the a;’s are distinct real numbers, and each b; is a nonzero real number.
Then Corollary 2.5 implies that for any nonzero real numbers by, ..., b7, each
eigenvalue of A is simple.
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