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CERTAIN GENERALIZATIONS OF G-SEQUENCES AND
THEIR EXACTNESS

KEE YOUNG LEE*, Moo HA W00, AND XUEZHI ZHAO

ABSTRACT. In this paper, we generalize the Gottlieb groups and the re-
lated G-sequence of those groups, and present some sufficient conditions
to ensure the exactness or non-exactness of G-sequences at some terms.
We also give some applications of the exactness or non-exactness of G-
sequences. Especially, we show that the non-exactness of G-sequences
implies the non-triviality of homotopy groups of some function spaces.

1. Introduction

Some subgroups of homotopy groups were introduced in [3] and [4], and were
named later as Gottlieb groups. Their properties and structures turned out to
be an interesting and active topic because of the connection with other mathe-
matical fields such as the fixed point theory ([2] and [6]), the rational homotopy
theory ([10]) and transformation groups ([15]). Unfortunately, concrete calcu-
lations of Gottlieb groups are very difficult, even more than those of homotopy
groups. Although they are all homotopy type invariant, Gottlieb groups have
no functoriality. Many traditional and effective methods in studying homotopy
groups can not be applied to the Gottlieb groups.

After a series works in [9], [13], and [14], the Gottlieb groups, together
with other “Gottlieb-like” groups, are successfully arranged in some sequences
namely, the G-sequences. It gives us a useful tool to access the Gottlieb groups.
Since the homomorphisms in G-sequences are the restrictions of those in homo-
topy sequences, any G-sequence is half exact, i.e., compositions of consecutive
homomorphisms are trivial. Some conditions are known under which the G-
sequence is exact, but in general it is not.

This paper presents some results in this direction. We generalize Gottlieb
groups and related G-sequences. We present some conditions under which the
G-sequence is exact or non-exact at the given terms, rather than the exactness
of the whole sequence. Furthermore, the relations amongst the exactness of
generalized G-sequences and other topological invariants are addressed.
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This paper is organized as follows. We give the definitions of generalized
Gottlieb groups and related G-sequence in Section 2. We bring focus into the
dependence of the generalized Gottlieb groups on the choice of base points
in the pairs of spaces involved in Section 3. In Section 4, we present some
sufficient conditions to ensure the exactness or non-exactness of G-sequence
at some terms. Some general applications of our conditions for exactness and
non-exactness will be given. In the meanwhile, we get a piece of information
of homotopy groups of some function spaces.

In this paper, all spaces are finite CW-complexes, all topological pairs are
CW-pairs and all subspaces mentioned contain the same base point as their
total spaces. We denote the n-dimensional cube by I™, its boundary by oI™
and the union of all n — 1 faces of I™ except for the initial face by J»*.

2. Generalized G-sequences

In this section, we shall generalize the original Gottlieb groups in [4] and the
G-sequence introduced in [14].

Let (X, A) and (Y, B) be two pairs of non-empty spaces. We write X ¥ for the
space consisting of continuous maps from Y to X with compact open topology,
and (X, A)(Y>B) for the subspace of X" consisting of relative maps from (Y, B)
to (X, A). We then have a natural pair of spaces (XY, (X, 4)Y"B)). Pick a
point by € B, go € (X, A)VB) and set go(bo) = ag. We choose by, go and ag as
base points of (Y; B), (XY, (X, A)Y"B)) and (X, A) respectively. Through the
whole of this paper, we always choose base points in this manner. Then there
is a natural based map:

o : (XY7 (X7 A)(YyB)ng) - (X7A7a'0)

which is given by w®(g) = g(bo) for any g € XY, and is said to the evaluation
map at bg. Thus, we have the following commutative diagram: [Diagram 1]

2oy (X, A)YB), go) 25 1o (XY, go) L5 ma (XY, (X, AP, gg) 22
wf" ws" w2°

2 maAa) S m(Xa) I (X Ae) 2

where the two horizontal sequences are homotopy exact sequences of the based
pairs of spaces (X, (X, A)¥5) go) and (X, A4, ao) respectively. If we con-

sider the images of these evaluation homomorphisms w?, we get a half exact
sequence: [Sequence 2]

“’W o (X, A)(YB 90)—>W Wn(XY790)‘“>w Wn(XY (X, 4) ¥.5) ,90) —

We call this sequence as G-sequence for (XY, (X, A)¥"®) go) at by.
The first G-sequence defined in [14], which is said to be the G-sequence
Jor the triple (X, A, ap), is just the G-sequence for (X4, (X, )44 i,) =
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(XA, A4, A) at ag, where i 4 is the inclusion from A4 to X. Moreover, we have
Gn(X, A a0) = wlom,(X4,i4), GEUX, A, ag) = whom, (X4, (X, A)AD i4).
The G-sequence for a map f : A — X was introduced in [12]. Let Z; denote
“the mapping cylinder of the map f, i.e.,

Zf:(AXIUX)/(a,O) ~ f(a).

The space A is regarded as a subspace according to the embedding iéf A — Zy
given by zéf (a) = (a,1). Since (Z;‘, (Z§, Ax 1)(A*A),i§f) = (Zf, (Ax1)4, iéf),
the G-sequence for (Z#,(Zy, A x 1)(A’A),i§f) at ag € A is the same as the G-
sequence for the map f: A — X (see [12, Theorem 3.3 and Corollary 3.4]).
Finally, we illustrate a property of the relative term in G-sequence. For any
subset Y’ of Y, there is a natural map ¥ : XY — XY’ which is just the
map restriction. Moreover, for a triple (Y,Y”, B) , we have a relative map

P (XY (X, AT S (XY (X, 4) B,

Clearly, 7Y is not surjective in general. But we have

Proposition 2.1. Let (X, A) and (Y, B) be finite CW- pairs, and let Y' be a
sub-complex of Y with B CY' C Y. Then, for any f : (Y,B) — (X, A) as a
base point of the pair (XY, (X, A)YB)), the homomorphism

Y (XY (X AT, f) - (X, (6 A, fly)
induced by the natural map r¥Y" is surjective for each positive integer n.

Proof. Pick an arbitrary element in m, (XY, (X, A)Y"B)_ f|y+), which is rep-
resented by a map o : (I",0I",J" 1) — (X¥' (X, A)Y"B) fly/). Then a
gives rise to a map H : (Y’ x I", B x 3I") — (X, A), which is defined by
H(y',s) = a(s)(y’) for all ¥y € Y and s € I". Note that H(y',s) = f(y') for
ally €Y' and s € J7 1.

Now, we can find an extension H' : (Y' x I")U (Y x J*7!) — X of H by
defining H(y,s) = f(y) forally € Y — Y’ and s € J* L. Since Y/ x I"UY x
Jrl =y xJr-! ><IU(Y/XI"_lLJYXaI”—l)XIand Y/ xI"1UY x0I™ tis a
sub-complex of Y x I"~!, there is an extension H : (Y x I, Bx 0I") — (X, A)
of H' by the absolute homotopy extension property.

Define amap 8 : I — XY by B(s) = H(-,s) forall s € I™. Tt is easy to check
that 8 maps (I, 81", J* ) into (XY, (X, A)¥B) f) and that oo = r¥"Y o 3.
Thus the proof is complete. O

From the following commutative diagram
Y, Y’/ ,
(XY?(X7A)(Y7B)7JC) e (XY/v(XaA)(Y 7B>vf|Y')
who | who |
(X,A,(Lo) = (X,A,CL())

where by € B and f(by) = ag, we have the following corollary.
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Corollary 2.2. Let (X, A), (Y,B) and Y’ be the same as in Proposition 2.1.
Then for each f € (X, A)YB) and each by € B,

Wi (mn (XY, (X, A) D, £)) = wlo (m (XY, (X, )P, fly).
In [14], a relative Gottlieb group GF¢!(X, A) is equal to
wom, (XX, (X, )X idy)

([14, Theorem 2]). Applying Corollary 2.2 to the case (X, A) = (Y, B) and
Y’ = B, we have

GE (X, A) = wm, (XA, (X, A)AY idy) = wPm, (X4, A%, id4).

So, Proposition 2.1 is a generalization of [9, Lemma 3.1].

3. Dependence on base points

In this section, we shall discuss the dependence of the groups on the base
points by and gy in the G-sequence defined in Section 2 when the base point
ap of the pair (X, A) is fixed. It sounds an elementary topic, but it is in fact
related to the root theory. Such a connection seems to be interesting.

As the remark in the beginning of section 2, we may assume that g; ' (ao)
is always non-empty. When we choose base points, the condition may not be
strong, since we have the following proposition.

Proposition 3.1. Let go € (X,A)Y"B). If the image go(B) of B under go
meets the path component of A containing ag, then there is a map g, in the
path-component of (X, A)YB) containing go and a point by € B such that
go(bo) = ao.

Proof. Since the image go(B) of B under go meets the path component Ay of A
containing ag, there is a point a; € go(B) N Ag. Hence, there is a point by € B
with go(bo) = a1 and a path « from ag to a; in Ag. We then obtain a map
H:(Bx{0})U{bo} xI— Agiven by H(b,0) = go(b) and H(bo,t) = a1 —t)
forallb € B and ¢ € I. Using the absolute homotopy extension property twice,
we can find an extension H' : (Y x I, Bx I) — (X, A) of H . The map H'(:,1)
is the desired map gj. O

First, we prove the following simple fact.

Proposition 3.2. The final two w? ’s in Diagram 1 induced by the evaluation
map at by are all surjective, i.e.,

Wi (mo((X, A)FP), go)) = mo(A, ao)

and
Wi (mo(XY, g0)) = mo (X, ao).
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Proof. Consider the last part of Diagram 1:

O

2 m((XL AYB) gy B m(XY o)
who who
R o4, ag) B mo(X, ao)

By definition, my(A4, ag) is a based set consisting of all components of A with
base element the component containing ag. Pick an arbitrary component A,,
and a constant map c,,, from Y to X with value a,, in A,,. Then ¢,  is an
element in (X, A)Y"B). Tt is obvious that w® (cq,, ) = am. It follows that as an
element of my(4, ag), Ay = w(cy,,), where ¢, is regarded as an element of
mo((X, A)YH) go). Thus, we obtain that w? (mo((X, A)YB) g0)) = (4, ag).

By using the same argument, we can prove that w2 mo (XY, go) = mo(X, ag)-

O

By Proposition 3.2, the final two terms in G-sequence, which are based sets,
not groups, are independent on the choice of gy and by. In general, the groups
in the G-sequence (Sequence 2) are dependent on the choice of gy and by.

Example. Let X =Y = S'V 8! be a wedge of two circles, and A = B = {ap}
be the wedge point. Write ¢,, : X — A for the constant map at ag. Then we
have that w? (7 (XY, ca,)) = m1(X, a0) (see [16]). Since w0 (m (XY, idx)) is
contained in the center of 7, (X, ag) and m (X, ap) is a free group Fo with two
generators, it follows that w® (m1 (XY, idx)) is a trivial group.

From this example, we know that the groups in the G-sequence (Sequence
2) maybe quite different if the base points by and gy come from different com-
ponents.

Proposition 3.3. Let gy and g; be in the same component of (X, A)Y-B), If
by and b1 are in the same path component of B and go(bs) = g1(b1), then we
obtain following three types of isomorphisms for each positive integer n:

W (X, AT, g0)) 2 W2 (ma (X, )P, gu)),

W (T (XY, g0)) 2wl (ma (XY, 1)),
W (M (XY, (X, A)T), o)) = Wl (mn (XY, (X, )P, g1)).

Proof. Since go and g; are in the same component of (X, A)B) go. g1 :
(Y,B) — (X, A) are relatively homotopic. Thus there is a relative homotopy
H: (Y xI,BxI)— (X,A) from gy to g;. As a pathin (X, A)"B) H(.,t) in-
duces a classical isomorphism 6. 1)} : T (X Y. g0) — (XY, g1). Pick a path
a: I — B from by to b;. Then a determines a homotopy w™® : X¥ — X from
w” and w®'. Note that w®® (H(-,1)) = H(a(t),1). Let ag = go(bo) = g1(b1).
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Then we obtain a commutative diagram:

[/} . =
(XY, go) LEEOh (XY, 1) = (XY, g1)

Wi | who | wit |

0 00 H (a(2),
Tu(X,a0 = go(bo)) ——0, (X, g1(bo)) —eODI, (X a0 = g1(b1))

The commutativity of the left square comes from the functoriality of the
isomorphism 6;,. The commutativity of the right square is just the relation
between the homomorphisms induced from homotopic maps. Since the path
product {H(bo,t)} - {H((t),1)} and {H(a(t),t)} are homotopic keeping end
points fixed, H{H(boyt)}e{H(a(t)’l)} = O{H(a(t),t)}' Thus we have the following
commutative diagram

2 .
Wn(XYaQO) M ﬂn(Xyagl)
i ] o
[ alt),
(X, ag) J{Hem D} (X, ag)

It follows that w? (m,, (XY, go)) and w? (m, (XY, g1)) are isomorphic subgroups
in 7, (X, ag).
Similarly, we can prove that

Wl (ma (X, A)TP), go) 22 Wl (mn (X, )T P), gy))
by using the commutative diagram:
Orn( .t
(X, AP g)) T (X, AV gy)
wi | wi |
T(Aag)  TEEOOL (4 )
and that
wio (7rn (va (Xa A)(Y7B) ) gO)) = wil (7Tn (va (Xa A)(Y’B) ’ gl))
by using the commutative diagram:
18
(XY, (X, A)VB) go) L (XY, (X, A)TB), g1)
who wh
Tl'n(X, A, (l()) EM) ﬂ.n(X7Aaa0)
O

By Proposition 3.2, the property g(B) meets a component of A is preserved
by elements in a path-component of (X, A)(Y>B). Thus, by Proposition 3.3, we
obtain

Theorem 3.4. The isomorphism types of groups in the G-sequence do not
depend on the choice of base points on the path-components of (X, A)Y-B) and
the path components of B.
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Here we recall some basic concepts in root theory (see [1] or [8] for more
details). Given a map ¢ : Y — X and a point ag € X, a point y € Y is said
to be a root of g at ag if g(y) = ag. Let K be a normal subgroup of 71 (X, ag).
All the roots of g at ag are split into equivalence classes, namely mod K root
classes, in the sense: two roots ¥’ and y” are in the same mod K root class
if there is a path § in Y from ¢ to y” such that go 3, a loop in X at aq,
represents an element in K. There is a well-defined correspondence between
the sets of root classes of homotopic maps. Let H : Y x I — X be a homotopy
from go to g;. We called a mod K root class of containing a root yo of go at
ag and a mod K root class containing a root y; of g1 at ag are H-related or yo
and y; are H-related mod K if there is a path v in Y from %, to y; such that
{H(v(t),t)} is an element in K. In the case that K is trivial group, we call just
Yo and y; are H-related. The elements of m1(X, ag) operate on 7,(X,ag) as a
group of automorphisms in a standard way. It is well-known fact that the set
of all elements of 7 (X, ag) which operate trivially on 7, (X, ao) for all positive
integer n is a subgroup ,which will be denoted as P (X, ap), and it is contained
in the center of (X, ag).

Lemma 3.5. Let go,¢91 : Y — X be homotopic maps by a homotopy H :
Y x I — X and by and by be two roots of gy and g, at ag respectively. If by
and by are H-related mod Py (X, ap), then w? (m, (XY, g0)) = Wl (mn (XY, 91)).

Proof. Since the mod P; (X, ap) root classes containing by and b; are H-related
by the hypothesis, there is a path o : I — Y from bg to by such that the diagonal
path H(a(-),-) of oo under H determines an element in P; (X, ag). Consider the
following commutative diagram (see Proposition 3.3):

Orm(.,
(XY, 90) 2 (XY, 1)
who wh
4
ﬂ-n(X7a0) M ﬂ-n(Xv aO)'

Since H(a(0),0) = go(a(0)) = go(bo) = ao, and H(a(1),1) = gi{a(l)) =
91(b1) = ao, the path H(a(:),-) is a loop at ao. The isomorphism 8.y, )}
is just the action of the element {H(«(), )} in m1(X, a0) on 7, (X, ap). Since
{H(a(),")} is an element of P1(X,aq), O(g(a(),)} is the identity by the defi-
nition of P (X, ao). O

Lemma 3.6. Let go, g1 : (Y,B) — (X, A) be relatively homotopic maps by a
homotopy H : (Y x I, B x I} — (X, A), and by and by two roots of go|s and
911 at ag respectively. If by and by are H|gyx-related, then
W (M (X, A) ) go)) = wi (ma (X, AP, g1)),
wf“(ﬂn(XYﬂo)) = wil(ﬂn(XY791))v
WP (XY, (X, )P, go)) = wh (m (XY, (X, A)7B), 1)),
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Proof. Since by and b, are H|py-related, the diagonal path H(a(-),) is ho-
motopic to constant path in A. Recall the proof of Proposition 3.3. Since the
isomorphism 01 (q(s),+)} is the identity, the proof is complete. a

Theorem 3.7. Given a path component By of B and a component M of
(X, A)Y'B), the groups in the G-sequence for (XY, (X, AYY'B) o) at by, as
subgroups of those in homotopy exact sequence of (X, A, aq), are independent
of the choice of by € By and go € M provided one of the following conditions
is hold:

(1) the based spaces (X, ao) and (4, ay), and the based pair (X, A, ao) are all
simple;

(2) one map, hence for all maps, in M induces o surjective homomorphism
from w1 (Y, bo) to m1(X,a0) and a surjective homomorphism from w1 (By,bo) to
Kist (A, ao) .

Proof. Suppose (1) holds. By the definition of simple spaces, the action of fun-
damental group 7, (X, ag) on high dimensional homotopy groups 7, (X, ag) (n >
0), and the action of fundamental group m1 (A, ap) on high dimensional homo-
topy groups 7, (4, ag) and 7, (X, A, ag) (n > 0) are all trivial. By Proposition
3.3, we have the result.

Suppose (2) holds. Recall from [8, p.133] that a root class of g, corresponds
to the coset of imgg, in 7 (X,ag). Since go. is onto and hence there is one
coset of imgo« in 71 (X, ap), go as well as any other maps in A has only one
root class. Similarly, go|p, has only one root class. By Lemma 3.6, we have
the conclusion. |

4. Criterions for the exactness and applications

Our purpose in this section is to give some conditions under which the G-
sequence is exact at some terms, instead of those for the exactness of the whole
G-sequence and present some applications.

By Proposition 3.1, the final two terms in the G-sequence are nothing but
those in the homotopy exact sequence for the pair (X, A). Thus we have

Proposition 4.1. The G-sequence for (XY, (X, A)Y'B) go) at by is ezact at
final term.

About the exactness of the term priori to the final term, we have

Proposition 4.2. Let By be the component of B containing by, X, the compo-
nent of X containing ag. Then the G-sequence for (XY, (X, A)Y"B), go) at by
is ezact at the term wl (mo((X, A)V"B) o)) if and only if for each component
Ay of A lying in X, golB, : Bo — X is homotopic to a map from By to Ag.

Proof. Let us prove “if” part first. From Proposition 3.1, we know

Wi (mo (X, A)TF), go)) = mo(A, ag).
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By definition, my(A, ag) is a based set consisting of all components of A with
the component containing ao as the base element, and mo(X,ap) is a based
set consisting of all components of X with base element Xg. If an element of
mo(A, ap) is sent to the base element Xg by i, : mo(4, ag) — mo(X, ap), it is a
component, say Ag, lying in X,. By the assumption, there is a homotopy H' :
By x I — X from go|p, to amap in AP°. We can extend H' to H” : BxI — X
by defining H”(b,t) = go(b) for all b € B — By. By the homotopy extension
property, we obtain an extension H : Y x I — X of H"” such that H|yxo = go.
It is evident that H(b,1) € A for all b € B. Thus, its adjoint H can be regarded
as an element in that m1 (XY, (X, 4)""B), go)). Since wb (H)(t) = H(bg,1) is
a path from go(bg) = ag to H(by,1) which is a point in Az, we have that
Ay (who (H)) = H(bg, 1), i.e., the element in 7y(A, ag) represented by Ay. Hence,
Ay lies in the image of the homomorphism

6* : wgo (7{'1(XY7 (X7 A)(Y’B),go» - 71-0(14,0'0>'

Let us show the “only if” part. Pick an arbitrary component A of A which
is contained in X. Then it is an element of the ker(i. : mo(4, ag) — mo(X, ao)).
Since the G-sequence is exact at

wl (mo (X, A)¥P) g0)) = mo(4, ag),
Ay as an element of mo(A4, ag), lies in the
Im(a* : WEO (7T1 (XY’ (Xa A)<Y)B) ’ gO)) - ﬂ'O(A: ao))7

ie., thereis amap H : Y x I — X with H(y,0) = go(y) for all y € Y and
H(b,1) € A for all b € B such that 0.(w® (H)) = 8.({H(bo,t)}) = H(bo,1) €
Ag. Thus, H|p,x1 is a desired homotopy. d

Corollary 4.3. The G-sequence is ezact at wb (mo((X,A)*B) q0)), if the
component of X containing ag meets only one component of A, especially, if A
has only one path component.

Here we need a lemma in algebra.

Lemma 4.4. Consider the following commutative diagram of groups and ho-
momorphisms:

A S A L 4
¢1l ¢2 | ¢3 ]
AL Lop
where ¢1, ¢2 and ¢3 are surjective, and the top row is ezact at As, i.e., Imi =
Kerj. Then we have:
(1) the bottom row is exact at A} if ¢3 is injective on Imj;

(2) the bottom row is not exact at Al if ¢3 is non-injective on Imj and if ¢o
1$ injective.
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Proof. (1) Pick an element af, in kerj’. Since ¢ is surjective, we may assume
that a5 = ¢2(az) for az € Az. By the commutativity of the diagram, we have
#3(j(a2)) = §'(¢2(a2)) = j'(ah) = 0. Because @3 is injective on Imj, j(az) = 0.
The exactness of the top row implies that az € Imi, i.e., az = i(a1) for some
a1 € A;. It follows that a5 = ¢2(az) = ¢2(i(a1)) = ¢’ (¢$1(a1)). We then obtain
that kerj’ C Imi’. By the commutativity of the diagram, it is easy to check
that kery’ D Ims’.

(2) Suppose that ¢3 is not injective on Imj. Then there is an element ag in
Aj such that j(az) # 0, but ¢3j(az)) = 0. Consider the element ¢2(az) € A3,
which lies in kerj’ because j'(¢2(az)) = ¢3(j(az)) = 0. We claim that ¢z(az) ¢
Imi’.

Assume that ¢2(az) = i'(a}) for some a] € A]. We would have ¢2(az) =
i'(¢1(a1)) for some a; € A; because ¢ is surjective. Hence, ¢2(az) = ¢2(i(a1)).
As ¢, is injective, ag = i(a;) € Imi. The exactness of top row would implies
that j(a2) = j(i(a1)) = 0. This is a contradiction. It follows that the bottom
row is non-exact at Aj. O

By Lemma 4.4, we obtain immediately that

Theorem 4.5. If all evaluation homomorphisms are injective on the image
of ix, or jx or O, depending on the domain of w. i Diagram 1, then the G-
sequence for (XY, (X, A)YB) go) at by is exact.

Corollary 4.6. If all homomorphisms induced on homotopy by the evaluation
maps concerned are injective, then the G-sequence for (XY, (X, A)Y'B), go) at
bg is exact.

On the other hand, we have

Theorem 4.7. If an evaluation homomorphism w?® in Diagram 1 is surjective,
then the G-sequence for (XY, (X, A)Y'B) go) at by is exact at the term neat to
that containing the image of this wb.

Proof. There are three types of evaluation homomorphism in Diagram 1. We
give a proof for one type, the proofs for other two types are similar.
Consider Diagram 1. Suppose

“U:O : 7I'n(()(’ A)(Y’B)’QO) - ﬂ'n(Av aO)

is surjective. We shall prove the G-sequence for (XY, (X, A)"B) g5) at by
is exact at w? (1, (XY, go)). Since the G-sequence is already half exact, it is
sufficient to show that the kernel of

Ju : WP (Ma(XY, g0)) = Wl (ma (XY, (X, A)FP), go))
is contained in the image of

(9 Wgo(wn((Xa A)(Y’B)vgo)) - WZO('”'H(XY».‘JO))-
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By assumption, the latter is just i.(m,(4,ap)) and by the exactness of the
bottom sequence in Diagram 1, we have

Kerj*lwio (XY o)) © Kerj,. C lmi,.

O

Recall that a space X is said to be a Gottlieb space if wb (m,(X*,idx)) =
(X, zo) for all positive integer n. Note that

Wi (M (XX ddx)) C w (mn(X4,i4))

for any A C X. By Theorem 4.7, we obtain a necessary condition for a space
to be a Gottlieb space.

Corollary 4.8. If X is a Gotilieb space, then the G-sequence for the pair (X, A)
is exact at GEL(X, A) for each subspace A of X and each positive integer n.

Especially, we have

Corollary 4.9. If X is a Jiang space, i.e., w2 (m1 (XX, idx)) = m (X, z0) then
the G-sequence for the pair (X, A) is ezact on GF(X, A) for each subspace A
of X.

Theorem 4.10. If X is aspherical, Then the G-sequence for pair (X, A)
for pair(X, A) ezact at all terms except for three: G1(X, A), GF (X, A) and
Go(A).

Proof. In fact, the exactness at the terms before Go(X, A) was already proved
in [9]. Consider the following commutative diagram:

(XA 04) L5 ma(XA A4 ids) 25 m(AMids) S m(XAiR)

wo | wlo wie | wge
Go(X,A) I cRUx, A 2 6 I GLX, A)
ni Nl N Nl
m(X,a0) I m(X,Ae) L m(da) S m(Xa)

Since 72 (X') = 0, the exactness at G(X, 4) = 0 is obvious. By the exactness
of the bottom sequence, we have that 8, : ma(X, 4,a9) — m (4, ag) is injective.
Hence, the G-sequence in the middle is exact at G§¢'(X, A). By [5, Lemma
2], we know w3 : m(X4,i4) — m1(X,a0) is injective. From Lemma 4.4, the
G-sequence is exact on G1(A). The exactness at final two terms was proved in
general in Proposition 4.1. |

Theorem 4.11. If there is a map f : A — X such that the G-sequence of f is
non-exact at G,}fel(Zf,A), then wn_l(AA,idA) is non-trivial, where Z; is the
mapping cylinder of f.
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Proof. Pick a base point ag and consider the following commutative diagram

Trn(ZA;iA) J_*> Wn(Z}quAJgf) 2»‘—} ﬂn—l(AA:idA)

fr°Zy
wye | wy® | wy |
Gn(Z1,4) *  GEUZp,A) 2 Gaa(4)
ny niy Nl

ﬂn(Zf’ao) J—*> Wn(Zf,A, 0/0) 2*—) 7T’n—l(14-a ao)

The top and bottom rows are parts of the homotopy exact sequence of
Z$#,A*) and (Zy, A) respectively, and the middle one is just a part of G-
f !

sequence of f. If m,_; (A4, ida) is trivial, then
wlo TI'n_l(AA,idA) — Gp_1(A) = wfo(ﬂ'n_l(AA,idA))

is trivial homomorphism between trivial groups, and hence is injective. By
Lemma 4.4, the G-sequence in the middle is exact at @I (Z, A). a

Theorem 4.11 shows that the non-exactness of G-sequence provides informa-
tion of the homotopy groups of function spaces. For example, the G-sequence
of the Hopf map p : §7 — $* is not exact at GF¢!(Z,,S7) (see [12, Corollary

4.7)). Tt follows that m3((S7)(57)) £ 0.
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