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ABOUT THE PERIOD OF BELL NUMBERS
MODULO A PRIME

MiREILLE CAR, Luis H. GALLARDO, OLIVIER RAHAVANDRAINY,
AND LEONID N. VASERSTEIN

ABSTRACT. Let p be a prime number. It is known that the order o(r) of a
root 7 of the irreducible polynomial zP —z—1 over F, divides g(p) = %.
Samuel Wagstaff recently conjectured that o(r) = g(p) for any prime p.
The main object of the paper is to give some subsets S of {1,...,9(p)}
that do not contain o(r).

1. Introduction

Some simple results about g(p) are collected in the following lemma:

Lemma 1.1. Let p be an odd prime number and set g(p) = P=l Then

p—1
a) ged(p — 1,9(p)) = 1, indeed g(p) = 1 (mod p(p — 1)), and g(p) = 1
(mod 4). .
b) Every divisor d of g(p) is of the form d = 2kp + 1 for some integer
k>0.

¢) Every divisor d of g(p) is of the form d = 4kp + 1 for some integer
k>0 when p=3 (mod 4).

Proof. We prove only c), the rest is well known and it is easy to check. Since
(2kp + 1)(2hp + 1) = 2(2khp + k + h)p + 1, we may assume that d = 2kp + 1
is a prime divisor of g(p). Write p = g™, where g is a generator of the cyclic
group C(d) of nonzero elements of Z/dZ. But d divides p? — 1 = (p — 1)g(p) so
that p? =1 (mod d). In other words we have:

¢"" =1 (mod d).

Thus, the order o(g) = d — 1 = 2kp of g in C(d) satisfies: o(g) divides pm. It
follows that 2k divides m so that m is even. This proves that p is a square
modulo d. Trivially, d is a square modulo p since d =1 (mod p). Now, by the

Received July 30, 2007.
2000 Mathematics Subject Classification. 11B73, 11T06, 11T55.
Key words and phrases. Bell numbers modulo a prime, extension of prime degree p of Fp,.

©2008 The Korean Mathematical Society
143



144 M. CAR, L. H. GALLARDO, O. RAHAVANDRAINY, AND L. N. VASERSTEIN

quadratic law of reciprocity of Gauss we get:

1= (g) (S) = (—1)EFER) — (_7)(BFhk

that proves the result. O

The Bell numbers B(n) are given by the exponential generating function

oy S B,
exp(e —1)—7; YRS

Let p be a prime number. Set b, = the minimal period of B(n) modulo p,
¢y = the order o(r) of a root r of the irreducible polynomial f(z) = 2P —z —1
over Fp, d, = the minimal number g > 0 such that B(n) + .-+ B(n+g) =0
(mod p).

Some well known facts are proved (or are easily deduced) from: [6] and its
bibliography, (3, pp. 84-91, Theorem 3.63, p.117, pp. 124-131, Theorem 3.84],

(1, Exercise 9, pp. A V.158-A V. 159], [5] and [2]. Item c) is proved in [4]:

Proposition 1.2. Let p be a prime number and set g(p) = %. Then

a) bp =cp, =d,.

b) ¢, divides g(p).

) 3(3) <ep.

d) ¢, = g(p) for p < 102 and also for p € {113,163,167,173}.

e) Buvery irreducible factor of F(z) = 29®) —z — 1 € F[z] has degree c,.
So, F(z) is wrreducible if and only if ¢, = g(p).

f) ¢, = g(p) if and only if for any primitive element a € F,, the trinomial
f(z,a) = 2P — z — a € Fy[x] is a primitive polynomial.

We may also consider the conjecture that ¢, = g(p) in the following form:
Let d be a divisor of g(p), and let r be a root in Fp» of f(z) = «? —x — 1. Write
d in base p as follows:

d=do+- - +dp_1p"7?,
where 0 < d; <p—1.Let P(z) = g%z + 1)1 ... (z+p—1)%-1 — 1.
Then ¢, = o(r) = g(p) if and only if the unique solutions of the exponential
equation

(1) 0=r®(r+1)%...(r+p-1)%1 - 1= P(r).
occur when dg =d; = -+ =dp_1.

While in [4] they do not consider the root r in their proof, their proof of
the lower bound c) in Lemma 1.2 comes essentially (besides a combinatorial

counting argument) from the observation that equation (1) has the only solution
d; = 0 for all i when

d=do+di+- - +dp_1 =deg(P(x)) <p.

A slight improvement of the lower bound is:
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Proposition 1.3. Let p > 3 be a prime number. Then
1/2p
> — .
Cp 2 3 (p) +p
1/2p
> =
*=3 (p> o

Proof. By using the known lower bound s = %(2;’) in Proposition 1.2 ¢) we
have just to prove that our candidates satisfy the right congruence conditions:
A theorem of Kummer says that the exponent of a prime divisor ¢ in ("}:k) is
the number of carries needed to add n and k when each of them is written in
base g. It follows that for odd n > 1, %(27?) is always even and that if n» > 3 and
n =3 (mod 4) then one has (277) =0 (mod 8). Moreover, for any prime p it is
known that (2;) = 2 (mod p). We have then proved that s =0 (mod 2), that
s =0 (mod 4) when p > 3 is congruent to 3 modulo 4, and that s =1 (mod p).

The result follows then from Proposition 1.2 b) and from Lemma 1.1. d

While,

when p =3 (mod 4).

The next section has to do with version f) (see Proposition 1.2) of the con-
jecture:

2. Improvement on Theorem 3.84 of Lidl and Niederreiter’s book

The object of the section is to prove the following result that improves on
the theorem in the title.

Theorem 2.1. Let p be a prime number and let a € F,, be a primitive element.
Let v € Fye be a root of f(x) = 2P —x — 1 of order o(r). Then the trinomial
f(z,a) = 2P — & — a € Fp[z] has order equal to o(r)(p — 1).

Let s be a root in Fy» of f(z,a). The following lemma proves Theorem 2.1
and describes in detail some natural invariants associated to s:

Lemma 2.2. Let p be a prime number and let a € F,, be a primitive element.
Let s be a root in Fpe of f(x,a) = 2P — x — a. Let e(a) be the least positive
integer g such that s9 € Fp; e(a) is usually called the “integral” order of f(x,a).
Let h(a) be the least positive integer h such that s* = a. Set r = s/a a root of

Y
f(z) =2 —x — 1. Set d = o(r), the order of r and as before set g(p) = ’;—_“Tl.
Then
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f) s is never a power of r while: Let the positive integers u < p? and
w < g(p) be such that d(p—1) |u—1 andd | w andp—1 | w—~1. Then

p—1|u—w, gcd(’;:";”,d)zl and

r=s""".

Specific values of u, w are: u € {p?, h(p — 1) + 1} and w € {g(p), h}.
g) There exist explicit solutions to the equation r = yP~1,

Proof. First of all observe that a9® = ga?-- o =aP = a (mod p). Anal-
ogously we have in Fpo: 79 = r(r + 1)---(r+p—1) =72 —7 = 1 50
that s9(P) = a9(P) = q. This proves that e(a) and h(a) are well defined, that
e(a) divides g(p), that h(a) < g(p) and that e(a) divides h(a). Now, consider
¢ =1, 1ie., s* = a? € F,. This proves that e(a) divides d. Set s*® = b ¢ F,.
By [3, Lemma 3.17, p. 89] one has that the order o(s) of the root s, satisfy
o(s) = e(a)o(b), where o(b) is the order of b in F}. Set h(a) = Ke(a) for some
integer K. Now, by definition of h(a) we have s¥¢(®) = sha) = g 5o that
a = b¥. But, a is primitive, so b is also primitive so that

ged(p—1,K) =1.
One gets:
(2) o(s) = (p — Defa).
Taking norms in both sides of ¢ = s™% one gets a = a™(®, le.,

h(a)=1 (modp—1).

In other words:

p—1]|e(a)K —1.
Set b = a® for some integer L coprime with p — 1. It is not difficult to see that
we have a = a™¥ in F, so that

p—1|LK-1.
It follows that
e(@)K = LK (mod p—1)
Le., that
(3) e(a) =L (mod p—1).
Now, from (3) and by definition of L and of e(a) it becomes clear that
s€(@) — gela)
In other words we have 7(*) = 1. But this proves that d = o(r) divides e(a).
We conclude that for all primitive a one has:
e(a) = d.

In particular h{a) = Kd so that d divides h(a). It follows from (2) that

(4) o(s) = (p — Do(r).
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It remains to prove that h(a) does not depends on the value of the primitive a :
We can assume that s/a = r = ¢/b where t* = ¢ + b for some primitive b € Fp».
Set b = a” for some L. From the definitions of h(a) and h(b) we get:

qLh(b) gh(B) _ Gh(®)+L

so that

Sh(0) — Gh(b)+L—Lh(b)

since h(b) =1 (mod p —1). This proves that h(a) < h(b). The result b) follows
by symmetry. We prove now f): Assume that s = r™ for some positive integer
M. Taking norms in boths sides of these equality we get the contradiction
a = 1, thereby proving the first claim. In order to complete the proof, we just
compute s*~%, the other properties are clear:

=a

sV = ra” = ra =T
™a¥ la
In order to prove g) observe that such v exist in F,» by Hilbert 90’s Theorem.
Since ged(p—1,d) = 1 there exists an integer ¢ such that ¢(p—1) =1 (mod d).
For any nonzero a,c € F, we may then take

v = (ar)%c.
Special cases are ¢ = ;‘)‘T’f, where u,w are as in f), in particular when v = p?
and w = g(p) one has ¢ =1+ 2p+3p*> + --- 4 (p — 1)p? 2. 0

3. The set of d’s with dg + -+ dp_1 < 2p — 1 does not contain o(r)

First of all we shall describe some properties that have the order d = o(r)
of r assuming that it is strictly smaller that g(p) :

Lemma 3.1. Let p be a prime number. Let r € Fp be a root of f(z) =
2P —x — 1. Let d = o(r) be the order of . Write d in base p as follows:

d=d0+d1p+~"+d __1pp—1.
Let g(p) = %. Assume that

d < g(p).
Then

do=1, dp_y =0=dp o

Proof. By Proposition 1.2 b) and from Lemma 1.1 we get dy = 1. Assume that
dp—1 > 1. From Lemma 1.1

d(2ep+ 1) = g(p)
for some integer e > 1. This implies the contradiction:
g(p) > 2p+1)d > dp>p" ' p=pP.
So, dp—1 = 0.
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Assume now that d,_; > 1. Analogously, there exist positive integers K, k,
e, [ such that

9(p)=2Kp+1=de=(2kp+ 1)(2p+1).
Rewrite this as: 2K = 2(2k}p + 2k + 21, i.e., as:

2K =2(di + -+ dp_sp? })p+ (dy + -+ + dp_spP™%) + 2L
From this we get the contradictory chain of inequalities:
2P > 2K > 2pP P p+pP 3 42> 2pP2
This proves that d,_s = 0. O

The following corollary gives an upper bound for d when d < g(p) :

Corollary 3.2. Let p be an odd prime number. Let §(p) =4 if p=1 (mod 4)
6(p) =2 if p=3 (mod 4). Let also u(p) =2 if p=1 (mod 4) and u(p) = 4 if
p =3 (mod 4).
Let ,
B(p) = S(p)p” P +p+4(p)
p*+68(p)p - 1

Let v € Fpe be a root of f(x) = 2P —x — 1. Let d = o(r) be the order of r.
Assume that

d < g(p)-
Then for some integer k such that u(p)k + 1 > B(p) one has
d=p"~% — (u(p)k + Lp+1 < p*~ — pB(p) + 1.
Proof. Clearly from Lemma 3.1 we obtain
d=do+dip+- +dpspP P <1+ (p—1)(p+-- +p")

so that we have the upper bound d < §,, where §, = 1+ p(pP~3 — 1). Observe
that 6, = 1 (mod 4p). Assume that for some integer £ > 0 we have:

(5) d =6, — p(p)kp = p*~* — (u(p)k + )p + 1.

Observe that d divides p” —1 so that p? =1 (mod d). Now reducing (5) modulo
d and multiplying both sides of the new equality by —p? we get

(WPk+1)p° —p* —1=0 (mod d).

So, observing that d is congruent to 1 modulo p, we get that for some positive
integer A > 0 one has:

(6) (u(@)k + 1)p* —p® — 1 = (Ap — 1)d.
This is equivalent to:

(7) (@) +1)(p* + Ap—1) = ApP 2 —p" 3 + A+ p.
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Now, reduce both sides of (7) modulo 4. We get A = 0 (mod 4) when p =1
(mod 4) and A = 2 (mod 4) when p = 3 (mod 4). In particular, A > 6(p) so
that from (6) we obtain the inequality

(u(p)k + 1)p* — p* — 1 > (6(p)p — 1)d.

Using (5), the result follows after some computation. 0

The following lemma show some necessary conditions for (1) to hold:

. p_1
Lemma 3.3. Let p be an odd prime number. Let g(p) = 1;_1 . Let d be a

divisor of pP — 1 and let v be a root in Fyo of f(x) =P —x — 1. Writed in
base p as follows:

d:d0+"'+dp—1pp—1a

where 0 < d; < p—1. Let P(z) = z%(x + 1) .- (z + p — 1)%-1 — 1. Set
§ = deg(P(x)).

a) Assume that d divides g(p), then ged(d,p — 1) =1 so that § is odd.
b) Assume that P(r) = 0 and that not all d;’s are equal. Then

d>p+ Z 1.
{] ’ dj >0}
Proof. By Lemma 1.1 a) g(p) is coprime with p — 1. The result a) follows then
from § =d (mod p—1).
In order to prove b) we multiply both sides of (1) by [y, | 5,0y (r +19) :
(8) r(r4+ 1) (r+p—1)1 = H (r+1),
{i [ di=0}

where e; = 1 if d; = 0 and e; = d; when d; > 0. Now we divide both sides of
@) by r(r+1)---(r+p—1)=1to get:
(9) II e+ = ] @+

{7 1 d;>0} {¢ | di=0}
Consider now the polynomials of Fy[z] defined by

Lz)= J] @+)% Ra@)= ][] (e+9).
{7 [ d;>0} {i | di=0}

Observe that not all d; = 0, i.e., we have deg(R(z)) < p—1 and that not all d; =
1, i.e., we have deg(L(z)) > 0. From the definition of 7 and from (9) it follows
that we have deg(L(z)) > p. In other words we have 3", 4 503 (d; — 1) 2 p-

This implies
5= > dizp+ Y, 1
{5 | d;>0} {7 1d;>0}
thereby proving the lemma. a

More information on § is contained in the following crucial lemma:
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Lemma 3.4. Let p be a prime number. Let d be a divisor of p? — 1 and let r be
aroot inFpe of f(x) = 2P —x—1. Writed in base p as: d =do+---+dp—1p"7 1,
where 0 < d; < p~— 1. Let Tr denote the trace of Fpe over Fp. Assume that for
some polynomial A(x) € Fplz] written A(z) = a9 + a1z + -+ - + a,z", one has
P)=z%@+ 1) . (z+p—1)%1 1= A=)’ -z —1).

Set 6 = deg(P(z)) and set n = deg(A(z)).
Then

a) Tr(A(r)) =46 (mod p).

b) One has in F, :

Tr(A(r)) = (-1) > Qkp—1-
{k21| kp—1<n}
Proof. By differentiating both sides of the equality P(z) = A(z)(zP — z — 1)
relative to x, we get
P'(z) = A'(z)(zP —x — 1) — A(x)

so that
(10) A(r) = —P'(r).
On the other hand:

(P +1) _ 5~ d

P(z)+1 —~ T+’
$0 that
d.

11 "(ry = .
(11) P'(r) Z —
From (10) and (11) we get

d;

12 = - .
(12) AN =-2.757
Observe that for all 4 ) )

TT(T —|—i) = Tr(;) =-1

since 2 + zP~1 — 1 € F[x] is the minimal polynomial of 1 and this polynomial
has as roots all the 3= for i =0,...,p— 1.
Now, take the trace in both sides of (12) to get in Fp:

Tr(A(r)) = —(Z di(~1)) = Zd'i =4

that proves a).
In order to prove b) let define for each non-negative integer k > 0 :

t, = T'r‘(rk).
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Clearly one hasin Fp: tg = p = 0, and t; = 0 the coefficient of P~ in zP —z—1.
Observe that defining the b;’s by:

p p

H(x —(r+i)=2P-2z-1= Z(—l)j b xP~d

i=1 7=0
from Newton’s identities

k—1
th = bitei(~1)"! +bp k (—1)F*
=1

one obtains:
tg = 0,...,tp..2 =0, tp__l =-1.
Since 7P = r 41 this repeats cyclically so that taking the trace in both sides of
Alr) =ag+air+ -+ a,r",
we get
T’I’(A(’l")) = —Qp-1 —A2p—1 — "
that proves b). O

Our main result follows:

Theorem 3.5. Let p be an odd prime number. Set g(p) = ”:%11. Let r be a

root in Fpe of f(x) = 2P —x — 1 of order o(r). Write a divisor d of p? — 1 in
base p as follows:

d=do+ - +dp_1p" 1,
where 0 < d; <p-1.
a) Assume that r® =1 and that not all d;’s are equal. Then
20~ 1<do+--+dy_1 <p>—3p+1.
b) Assume that d = o(r) < g(p). Then
pP°P=3p>do+---+dp_ >2p—1.

c) Let e be a divisor of p? — 1 written in base p as

e=eq+ - +ep1pPl

where 0 < e; < p—1. Assume that not all e;’s are equal and that either
eot - -+ep1<2p—1lorthateg+---+ep_1>p(p—3)+1 Then
d does not divide e.

Proof. One can write r¢ — 1 = 0 in the form (1). Now from the equality in
Fplz] :

Pla)=z®@+1)%  (z+p—1)%"1 —1= A(z)(z? —z—1)
in which we set n = deg(A(z)) and § = deg(P(z)), we get
n=0-p=do+---+dp1—p
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Assume that n < p — 1. Then by Lemma 3.4 one has
=0 (mod p)
so that (observe that d > 0 and that § < 2p — 1)
é=p.
By Lemma 3.3 one gets the contradiction
p=&=p+ Y L
{5 [ d;>0}
So one has
do+---+d,_1>2p—1.
Now, we have also that r#"~1~¢ = 1, so that:
(p-1)—do+ - +(p—1)—dp—122p~1
i.e., one has
do+ -+ +dp1 <p°~3p+1

that proves a). So, ¢) follows immediately also.

In order to prove b) observe that dg = 1 and dy_1 = dy—2 = 0 by Lemma
3.1 so that we can apply a). It remains just to prove the strict inequality
6 < p® — 3p. Assume that § = p? — 3p + 1. Set M = max(dy,...,dp—3). Using
dg =1 we get

d=plp—-3)+1<1+(pP-3)M

i.e., we get the contradiction

p <M.
So, § < p(p — 3). Now by Lemma 3.3 a), one has that ¢ is odd. It follows that
& < p(p ~ 3), thereby finishing the proof of the theorem. O

4. The set of d’s with at most 4 nonzero d;’s does not contain o(r)
Our main result is:

Theorem 4.1. Let p > 11 be a prime number. Let r € Fpr be a root of
f(z) =2P —z — 1 of order d = o(r). Write d in base p as follows:

d=do+dip+--+dp1p”,
where 0 < d; <p-—1. Let g(p) = %. Assume that
d < g(p)-
Then the number s of nonzero d;’s is at least 5, i.e.,

s=2125.

d;>0
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Proof. Set § = dy + -+ + d,_1. Observe that dy = 1 and that Theorem 3.5
gives § > 2p — 1. So, we have s > 3. If s = 3 the same theorem, together with
dp—1 =d,_2 =0, forces d to have the form

d=1+(p~1p"+ (-1
for some integers 1 < k <! < p—3. From r¢ =1, i.e., from
r(r + k)P Hr+ )P =1,
one gets by multiplication of both sides by (r + k)(r + !} the contradiction

rir+k+1)(r+14+1)=(r+k)(r+1).
So, s > 4.
Assume that s = 4. Then d has the form
d =1+ dgp* + dip' + dpp™

for some integers 1 <k <! <m < p— 3. From r¢ = 1, i.e., from
(13) r(r+ k)% + D)% +m)dm =1,
one gets by multiplication of both sides of (13), by (r 4+ 1)P=%(r + m)P~9m
(19) ol R L D+ m 1) = ()T )
Butd=1+4+dp+d;+dpn >2p—1s0:

dp +32>2p— (dm + dy),
and by symmetry:

di+322p— (di +dm),
and

dm +3 > 2p— (di + dy).

So, remembering that the minimal polynomial of r is of degree p, we get from
(14), and by symmetry:

p—1>dp 2p-3,

p—1>d >p-3,

p—1>d, >p-3.
Now multiply both sides of (13), by (r + k)P~ (r + [)P~%(r + m)P~% to get
(15) r(r+k+ D)(r+1+D)(r+m+1) = (r+ k)P %+ )P4 (r + m)P9m,
But

P—de)+(p—di)+ (p—dm) <9.

So, remembering that the minimal polynomial of 7 is of degree p > 11, we see

that (15) gives a contradiction, so s > 4, thereby finishing the proof of the
theorem. O
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5. Some simple computational issues

We report here on some computations done in order to improve our lower
and upper bounds for a range of p’s. Two computer programs written in Maple
were runned on a machine with 8 processors with following results:

Proposition 5.1. Let S be the set of primes in between 103 and 257 and let
So the set of primes in between 11 and 3511. Let p be a prime number. Let
r € Fpo be a root of f(z) = 2P — x — 1 of order d = o(r). Let u(p) and k be
defined as in Corollary 3.2. Then

a) Forp € Sy one has that either d = g(p) or

1/2
5 (;) +8000p < d < p”~2 — (u(p)k + 1)p + 1 — 16000p.

b) For p € Sy one has that either d = g(p) or
d < pP7? — (u(p)k + 1)p +1 - 10%p.

c) Forpe€ Sy one has:

1/2
—(p)+108p§d.
2\p

The computer programs used the trivial fact that one has
PP =1 (mod d).

Timings: 141 seconds for left hand side inequality in a}, 497 seconds for right
hand side inequality in a). While, b) took 1174 seconds and c¢) took 9916
seconds on the same machine. Advantage of computing p? (mod d) without
really computing pP was used everywhere on the programs.
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