J. Korean Math. Soc. 45 (2008), No. 2, pp. 301-312

LINEAR PRESERVERS OF SPANNING COLUMN RANK OF
MATRIX SUMS OVER SEMIRINGS

SEOK-ZUN SONG

ABSTRACT. The spanning column rank of an m X n matrix A over a
semiring is the minimal number of columns that span all columns of A.
We characterize linear operators that preserve the sets of matrix pairs
which satisfy additive properties with respect to spanning column rank
of matrices over semirings.

1. Introduction

In the last few decades a lot of work has been done on the problems of
determining the linear maps on the n x n matrix algebra M, (F) over a field F
that leave certain matrix relations, subsets or properties invariant. For a survey
of these type of problems see [6]. Although the linear preservers concerned are
mostly linear operators on matrix spaces over fields or rings, the same problem
has been extended to matrices over various semirings.

Marsaglia and Styan [5] studied on the inequalities for rank of matrices. Re-
cently, Beasley and Guterman [1] investigated the rank inequalities of matrices
over semirings. And they characterized the equality cases for some inequalities
in [2]. This characterization problems are open even over fields (see [5]). The
structure of matrix varieties which arise as extremal cases in these inequalities
is far from being understood over fields, as well as over semirings. A usual
way to generate elements of such a variety is to find a tuple of matrices which
belongs to it and to act on this tuple by various linear operators that preserve
this variety. The investigation of the corresponding problems over semirings
for the factor rank function was done in [2]. The complete classification of
linear operators that preserve equality cases in matrix inequalities over fields
was obtained in [3]. Song and Hwang characterized the linear operators that
preserve spanning column ranks of matrices over nonnegative reals in [7]. For
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the details on linear operators preserving matrix invariants one can see [6] and
references therein.

In this paper, we characterize linear operators that preserve the sets of ma-
trix pairs which satisfy additive properties with respect to spanning column
rank of matrices over semirings.

2. Preliminaries

A semiring S is essentially a ring in which only the zero is required to have
an additive inverse([8]). Thus all rings are semirings. A semiring is called
antinegative if the zero element is the only element with an additive inverse.
The set of nonnegative integers is an example of antinegative semiring but it
is not a ring,.

A semiring S is called Boolean if S is equivalent to a set of subsets of a
given set M, the sum of two subsets is their union, and the product is their
intersection. The zero element is the empty set and the identity element is the
whole set M. ;

It is straightforward to see that a Boolean semiring is commutative and
antinegative. If S consists of only the empty subset and M then it is called a
binary Boolean semiring (or {0, 1}-semiring) and is denoted by B.

A semiring is called chain if the set S is totally ordered with universal lower
and upper bounds and the operations are defined by a + b = max{a,b} and
a- b= min{a, b}.

It is straightforward to see that any chain semiring S is a Boolean semiring
on the set of appropriate subsets of S.

Let M, (S) denote the set of m x n matrices with entries from the semiring
S. If m = n, we use the notation M, (S) instead of M, . (S).

A vector space is usually only defined over fields or division rings, and mod-
ules are generalizations of vector spaces defined over rings. We generalize the
concept of vector spaces to semiring vector spaces defined over arbitrary semir-
ings.

Given a semiring S, we define a semiring vector space, V(S), to be a non-
empty set with two operations, addition and scalar multiplication such that
V(S) is closed under addition and scalar multiplication, addition is associative
and commutative, and such that for all u and v in V(S)and r,s € S :

1. There exists a 0 such that 0 + v = v,

2. lv=v=vl,

3. rsv =r(sv),

4. (r+s)v=rv+sv,and

5. r(u+v)=ru+rv.

A set W of vectors from a semiring vector space V(S), is called linearly
independent if there is no vector in W that can be expressed as a nontrivial
linear combination of the others. The set is linearly dependent if it is not
independent. '
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A set B of linearly independent vectors is said to be a basis of the semiring
vector space V (S) if its linear span is V(S). The dimension of V(S) is a minimal
number of vectors in any basis of V(S).

The following rank functions are usual in the semiring context.

The matrix A € M, ,(S) is said to be of factor rank k (rank(A4) = k) if
there exist matrices B € M, 1 (S) and C € M}, ,,(S) such that A = BC and k is
the smallest positive integer for which such factorization exists. By definition,
the only matrix with factor rank 0 is the zero matrix, O.

The matrix A € M, ,,(S) is said to be of column rank k (c(A) = k) if the
dimension of the linear span of the columns of A4 is equal to k.

The matrix A € M, ,,(S) is said to be of spanning column rank'k (sc(A) = k)
if the minimal number of columns that span all columns of A is k.

It follows that

1 < rank(4) < c(4) < sc(A) <n
for all nonzero matrix A € M, ,(S)(see [1, 4, 7]). These inequalities may be
strict: let

A=[3 4], B=[3-VT Vi-2]eM,(S),

where S = (Z [/7))* is the semiring of nonnegative elements of the ring Z
[V7]. Then rank(A) =1 < 2 = ¢(A4), and ¢(B) =1 < 2 = sc(B) since
(3 —=+v7) + (v/7—=2) = 1 but any one column of B does not span the other
column over § = (Z [V7])*.

A line of a matrix A is a row or a column of A.

If S is a subsemiring of a field then there is a usual rank function p(A4) over
field for any matrix A € M, »(S). Easy examples show that over semirings
these functions are not equal in general. However, the inequalities

p(4) < rank(4) < e(4) < se(4)

always hold. The behavior of the function p with respect to matrix multipli-
cation and addition is given by well-known Frobenius, Schwartz and Sylvester
inequalities (see [1]). Arithmetic properties of spanning column ranks depend
on the structure of semiring of entries.

For matrices X = [z; ;] and Y = [y; ;] in M}, » (S), the matrix X oY denotes
the Hadamard or Schur product, i.e., the (i,7)*® entry of X oY is z; jy; ;.

We say that the matrix A dominates the matrix B if b; ; # 0 implies that
a;; # 0, and we write A > B or B < A in this case.

If A and B are matrices with A > B, then we let A\ B denote the matrix C

where
0 if bi’]‘ ;é 0;
Cij = .
a;; otherwise.

Let Z(S) denote the center of the semiring S. The matrix I, is the n x n
identity matrix, J,, , is the m x n matrix of all ones, O, , is the m x n zero
matrix. We omit the subscripts when the order is obvious from the context
and we write [, J, and O, respectively. The matrix F; ;, called a cell, denotes
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the matrix with 1 in (¢, §) position and zero elsewhere. A weighted cell is any
nonzero scalar multiple of a cell, i.e., aE; ; is a weighted cell for any 0 # a € S.
Let R; denote the matrix whose it row is all ones and all other rows are zero,
and C; denote the matrix whose j*" column is all ones and all other columns
are zero. We let |A| denote the number of nonzero entries in the matrix A.
We denote by A[i1,...,ik|j1,.--,Ji] the k x I-submatrix of A which lies in the
intersection of the iy,...,4; rows and ji,...,J; columns.

Let A = {0, )i =1,...,m;j =1,...,n}. If m = n, we use the notation
Ay, instead of A, .

Let S be a semiring, not necessary commutative. A map T : M, ,(S) —
My »(S) is called linear operator if T' preserves matrix addition and scalar
multiplication on both sides.

We say that a linear operator T preserves a set P if X € P implies that
T(X) € P, or, if Pis a set of ordered pairs, that (X,Y) € P implies (T'(X),T(Y))
eP.

An operator T on M, , (S) is called a (P, Q, B)-operator if there exist per-
mutation matrices P € M, (S) and Q € M, (S), and a matrix B € M, ,(S)
with B > J such that

(2.1) T(X)=P(XoB)Q
for all X € M, ,,(S) or, m = n and
(2.2) T(X)=P(XoB)'Q

for all X € M, (S), where X* denotes the transpose of X. Operators of the
form (2.1) are called non-transposing (P, Q, B)-operators; operators of the form
(2.2) are transposing (P, Q, B)-operators.

An operator T is called a (U, V)-operator if there exist invertible matrices
UeM,,(S)and V &€ M, (S) such that

(2.3) T(X)=UXV
for all X € M,,, ,(S) or, m = n and
(2.4) TX)=UXV

for all X € M, (S). Operators of the form (2.3) are called non-transposing
(U, V))-operators; operators of the form (2.4) are transposing (U, V)-operators.
Unless otherwise specified, we will assume that S is an antinegative semiring
without zero divisors in the followings.
We recall some results proved in [2] for later use.

Theorem 2.1 ([2, Theorem 2.14]). Let T : My, o (S) = My, »(S) be a linear
operator. Then the following are equivalent:
(1) T is bijective.
(2) T is surjective.
(3) There exists a permutation o on A, ,, and units b; ; € Z(S) such that
T(Eiyj) = bi,an(i,j) f07” all (Z,j) € Am,n-
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Lemma 2.2 ([2, Lemma 2.16]). Let T : M;,,n(S) = M, (S) be a linear
operator which maps lines to lines and is defined by T(FE; ;) = b; jEq(; j), where
o 15 a permutation on Ay, ,,, and b; j € Z.(S) are nonzero elements. Then T is
o (P, Q, B)-operator.

One can easily check that if m = 1 or n = 1 then all operators under
consideration are (P, (), B)-operators, if m = n = 1 then all operators under
consideration are (P, P*, B)-operators.

Henceforth we will always assume that m,n > 2. We say that M,, ,, (S) has
full spanning column rank if for each k < min{m,n}, My—k.n—x (S) contains a
matrix of spanning column rank n — k.

If m > n, then we can easily show that M, »(S) has full spanning column
rank. But for m < n, M, ,,(S) may have or not have full spanning column
rank according to a given semiring S. For example, My 4 (Z™) has full spanning
column rank, while Ms 4 (B) has not.

The spanning column ranks of matrix sums over semirings are restricted by
the following list of inequalities established in [1] :

For O # X,Y € Mn(S),

(2.5) 1<sc(X+Y)<n.

If S is a subsemiring of R* (the nonnegative reals), then
(2.6) se(X +Y) 2 [p(X) — p(Y)].
HO#X€Mnn(S),0#Y € M, x(S)

(2.7) s¢(XY) < sc(Y).

As it was proved in {1} the above inequalities (2.5), (2.6) and (2.7) are sharp
and the best possible.

The following example shows that an inequality, p(A+ B) < p(4)+p(B), for
rank of sum of two matrices A and B over s field does not work for spanning
column rank.

Example 2.3. Let

111
A=|1 1 1| eM((z"), B=
000

where ZT is the semiring of nonnegative integers. Then sc(4) + sc(B) = 2 <
3=sc(A+ B), and sc(A+ A) =1 < 2 = sc(A) + sc(A) over ZT.

Lemma 2.4. Let B be a matriz in My, , (S) with sc(B) = 1. If all elements of
B are units in Z(S), then sc(X) = sc(P(X o B)®) for all permutation matrices
P € Mo (S) and Q € M, (S),

Proof. Let X be any matrix in M, ,(S). If @ € M,(S) is a permutation
matrix, it is clear that sc(X) = sc(X@). Thus, for all permutation matrices
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P e M, (S) and @ € M, (S), we have
se(X) = s¢(P'PXQ) < s¢(PXQ) < 5¢(XQ) = sc(X)

from (2.7), and hence sc(X) = sc(PXQ). Thus, we suffice to claim that
s¢(X) = se(X o B).

Since sc(B) = 1, there exists a column b; = (by,...,bm,;)" € S™ such that
B = bje = [e1 by, esby,...,e,bi| with e = (ey,...,1,...,¢e,) € S™ Thus, for
any matrix X = [X1, X2,...,Xn| € My, (S), we have X o B = [(x;10e1by), (%20
eabi), ..., (xn 0 eyby)]. Let x;,,...,x%;, be any columns of X. Then we suffice
to show that x;,,...,x;, are spanning columns for all columns of X if and only
if (x4, oe;by), ..., (x4, oe;, b;) are spanning columus for all columns of X o B.
Let sc¢(X) = k and x1, .. ., X} be spanning columns for all columns of X without
loss of generality. Then x, = Zle c;xj forall r =1,...,n with ¢; € S. Then

we have (x, oe,b;) = Zle ¢;(x; o exby), equivalently, x; o e1by, ..., x; o exb;
are spanning columns for all columns of X o B.

Conversely, assume that sc(X o B) = k and (x; o e1by), ..., (xx o exb;) are
spanning columns for all columns of X o B without loss of generality. Then for
any column of X o B we can write (x, o e,b;) = Z;:l fi(x; oe;b;) for f; €8.

Let by’ = (b1 ;7' ..., b, 1)t €S™. Then

k
(xr 0 e,bs) o by’ = (Z fi(xj0 ejbi)) o by,
Jj=1
equivalently

k
erbi o (bj o by')x; = (Z fieibio bi')) o Xj
Jj=1
since all entries of B are in Z(S). Hence e,x, = Zle ej fix; because bjob;’ =
(1,...,1) € S™. That is, x, = 2;?:1 e; ! fie;x;, equivalently, x1,...,x; are
spanning columns for all columns of X. O

Lemma 2.5. Let T be a (P, Q, B)-operator on My, »(S), where sc¢(B) =1 and
all elements of B are units. If S is commutative, then T is a (U,V)-operator.

Proof. Since T is a (P, Q, B)-operator, there exist permutation matrices P €
M, (S) and @ € M, (S) such that T(X) = P(X o B)Q,or m = n and T(X) =
P(X o B)!Q for all X € M, ,(S). Since sc(B) = 1, there exists one column
bi = (bi,...,bm,)t among the columns of B such that B = bje with e =

(€1y..-,€i-1,1,€41,...,€,). Since bj; are units, e; are invertible elements
in S forall j =1,...,n. Let D = diag(b14,-..,bm,i) € M, (S) and E =
diag(e1,...,e,) € M, (S) be diagonal matrices. Since S is commutative, it is

straightforward to check that X o B = DXE for all X € M,,, ,,(S). For the case
of T(X)=P(XoB)Q,ifwelet U= PD and V = EQ, then T(X) = UXV for
all X € My, »(S). If T is of the form T(X) = P(X o B)!Q, then U = PE and
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V = DQ shows that T(X) = UX'V for all X € M,,, ,(S). Thus the Lemma
follows. O

Let X = [ g ] be a matrix in M, 1 (ZT). Then we have that sc(X) = 1, but

s¢(X') = 2. Thus, in general, it is not true that for a matrix X € M, » (S),
sc(X) = 1if and only if sc(X*) = 1. But the following is obvious:

Lemma 2.6. Let B be a matriz in M,, ,(S) and all elements of B are units
in Z(S). Then sc(B) = 1 if and only if sc(Bt) = 1.

Consider a matrix

0011

_ 1001

(28) == lo 110
0000

in My (S). Then we can easily show that sc¢(Z) = 4 and sc(Zt) = 3.

Below, we use the following notations in order to denote sets of matrices
that arise as extremal cases in the inequalities (2.5) and (2.6):

[1 = {(X,Y) € My o (S)* | sc(X +V) = 1};

T = {(X,Y) € My, (S)? | se(X +Y) = n};

Tr = {(X,Y) € My (S)? | se(X + 1) = [p(X) — p(¥)[};

In the following sections, we characterize linear operators that preserve the
sets I'y, I', and I'p.

3. Linear preservers of I'y
In this section, we investigate the linear operators that preserve the set T';.

Theorem 3.1. If T is a surjective linear operator on M, »(S) that preserves
[y, then T is a (P,Q, B)-operator, where sc(B) = 1 and all elements of B are
units in Z(S). In particular, if S is commutative, then T is a (U, V)-operator.

Proof. Suppose T is a surjective linear operator that preserves I';. By Theorem
2.1, there exists a permutation o on A,,, and units b;; € Z(S) such that
T(Ei,j) = bi,an(i,j) for all (7,,]) S Am,n-

Assume that T does not preserve lines. Then, without loss of generality, we
may assume that either T(Ey 1+ Ey3) = b1 E11+bi2Bsp or T(Ey 1+ Fa ) =
bi1FEy 1 + by 1 By 2. In either case, let Y = O and X be either Ei1+ E 2 or
Ei1 + Ey, so that (X,Y) € 'y while (T(X),T(Y)) ¢ Ty, a contradiction.
Thus T preserves lines. By Lemma 2.2, T is a (P, ), B)-operator, where all
elements of B are units in Z(S). Suppose sc(B) > 2. Then (J,0) € T
and sc(T'(J)) = sc(B) or sc¢(B?) by Lemma 2.2, and hence by Lemma 2.6,
5¢(T(J)) > 2 so that (T'(J),0) ¢ T1, a contradiction. Hence we have sc(B) =
1.

If S is commutative, Lemma 2.5 shows that T is a (U, V)-operator. O
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In general, the converse of Theorem 3.1 may be true or not according to
a given semiring S. Obviously, by Lemma 2.4, all non-transposing (P, @, B)-
operators with sc¢(B) = 1 (all elements of B are units in Z(S)) preserve I';.
But the following example shows that transposing (P, Q, B)-operators may or
not preserve I'y according to given semirings

Example 3.2. (1) Consider the semiring Z* of all nonnegative integers. Let
X= g 8 ] ® Op—g € M, (Z™*). Then we can easily show that (X,0) € T'y,

while (X*,0%) ¢ T';. So, the converse of Theorem 3.1 is not true in this case.

(2) Consider the binary Boolean semiring B. Then it is straightforward that
for a matrix A € M, (B), sc(A) = 1 if and only if all non-zero columns of A
are the same. Thus all non-zero rows of A are the same and sc(A?) = 1. That
is, for any permutation matrices P,Q € M, (B), we have that sc(A) = 1 if and
only if s¢(PA*Q) = 1. This shows that the converse of Theorem 3.1 is true in
this case.

Over chain semiring, Theorem 3.1 can be generalized in the following way:

Theorem 3.3. Let S be a chain semiring. If T is a linear operator on Mp, » (S)
that preserves I'1, then followings are equivalent:

(1) T is surjective.

(2) T strongly preserves T'y.

(3) T is a (P,Q)-operator.

Proof. Clearly, (3) implies that (1) and (2) are satisfied. Assume (1). By
Theorem 3.1, T is a (P, @, B)-operator, where mc(B) = 1 and all elements of
B are units in Z(S). Since the only invertible element of a chain semiring is 1,
it follows that B = J. Hence (3) is satisfied. Now, we suffice to show that (2)
implies (3).

Assume (2). We want to show that there exists 8 € S such that AT is
surjective on My, ,(8S). In order to show this, it suffice to check that for each
pair of indices (¢, j) there exist ¥ € M., . (S) and a € S such that T(Y) = aE; ;.
If this is not the case or if there is a cell whose image is not dominated by a
cell, then there exists a (0, 1)-matrix N = [n; ;] and a pair of indices (r, s) such
that n,, = 0 and T(N) > T(J). Let us show that there exists a € M, . (S)
such that T'(aJ \ E, ) = T(aJ).

Let T(N) = G = [gi,j], a = min{gi,jlgi,j # 0}, and T(J) = H = [hz,J]
Since N is a (0, 1)-matrix, there exists a (0, 1)-matrix M such that J = N+ M.
Thus H = T(J) =T(N)+T(M) = G+ T(M). Since S is a chain semiring,
hij > gi,; for all (i,5). By the choice of N, T(N) > T'(J). That is, g;; = 0
implies that h;; = 0. So, ah;; = a = ag;; by the definition of a. Thus,
T(aN) = aT(N) = oT(J) = T(aJ). In the same way, it can be checked
that if K is any (0, 1)-matrix such that N < K < J, and T(K) = R = [r; j],
then ar;; = ag;;. Hence, T(aK) = T(aJ). Since N < J\ E., < J, we
have T(aJ \ E, ;) = T(aJ). Since sc(aJ \ E, ) # 1, we have (aJ \ E.s,aJ \
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E,.) ¢ Ty, while (aJ,aJ) € T'y. Hence, (T'(aJ \ E, ), T(aJ \ E,;)) ¢ T,
while (T'(aJ),T(aJ)) € 'y, a contradiction with T'(aJ) = T{(aJ \ E, ). Thus
there is no such a matrix N with a zero entry such that T(N) > T(J). It
follows that the image of a cell dominates only one cell and that for 3 =
min{h; ;|T(J) = H = [h;;|}, BT is surjective on M,, ,(8S) and as above
Theorem 3.1, is a (U, V)-operator since S is a commutative chain semiring.
That is, T is a (P, @, B)-operator on M,, ,(S). Suppose that B # J. Then
bij # 1 for some (i, j). Consider the matrix X = E; ; + b; ;J. Then (X, X) ¢
I'y, while

T(X) = T(Bi;)+T(bi;J)=bi;T(Ei;)+T(bi;J)
= T(bi’jEiJ + bi’jJ) = T(bi,ja]),

a contradiction to (2) since (b; ;J,b; ;J) € I'y. Thus B = J and T is a (P, Q)-
operator. Hence (3) is satisfied. a

4. Linear preservers of T',,

Recall that
Ln={(X,Y) €M, .(S)?|sc(X +Y) =n}.

Lemma 4.1. Let M, ,, (S) have full spanning column rank, o be a permutation
of Amn, and T be defined by T(E; ;) = b; jE,(; ;) for all (i,5) € Am n, where
oll b;; are units in Z(S). If T preserves T, then T preserves lines.

Proof. Suppose T does not map lines to lines. Then there are two non-collinear
cells £ and F' such that T(F + F') is dominated by either R; or C; for some ¢
and j.

If T(E+ F) < Cj, we lose no generality in assuming that

T(Ei1+ Ez2) =b11E11 +byoEs ;.

If n < m, consider A = Ey; + Es2+ -+ + E,_,. Then T(A) has spanning
column rank at most n — 1 since b; ; are invertible. That is, (0, 4) € T,
while (T'(0),T(A)) ¢ Ty, a contradiction. Let us consider the case m < n.
Since M, (S) has full spanning column rank, there exists a matrix X' €
M2 n—2 (S) such that s¢(X') = n—2. Let us choose X' with the minimal num-
ber of non-zero entries. Let X = O2 ® X' € M, ,(S). Thus se(X) = sc(X') =
n — 2. Hence (Ei1 + E35,X) € I',,. Since T preserves T',,, it follows that
(b171E1,1 +b272E271,T(X)) el,, ie., Sc(bl,lEl,l +b2,2E2’1 +T(X)) = n. There-
fore se(T'(X)[1,...,m|3,...,n]) > n—2. Since the spanning column rank of any
matrix cannot exceed the number of columns, se(T(X)[1,...,m|3,...,n]) =
n — 2. Further, [T(X)[1,...,m|3,...,n]| < |X| = [X'| since T transforms cells
to weighted cells and at least one cell has to be mapped into the 2°¢ column.
Thus we can select an (m — 2) X (n — 2) submatrix of T(X)[1,...,m|3,...,n]
whose spanning column rank is n — 2 and the number of whose nonzero entries
are less than that of X'. This contradicts the choice of X',
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I T(E + F) < R;, we may assume without loss of generality that T(E; ; +
Es2) = b1,1E1 1 +b39E) 5. In this case, by considering the matrices E; 1 + Es 5
and X chosen above, the result follows.

Thus, T preserves lines. |

Theorem 4.2. Let T be a surjective linear operator on My, , (S), where m # n
orm=n2>4. If M,,, »(S) has full spanning column rank, then T preserves I',,
if and only if T is a non-transposing (P, Q, B)-operator, where sc(B) = 1 and
all elements of B are units in Z(8).

Proof. Suppose T is a non-transposing (P, Q, B)-operator on M,, ,,(S), where
sc(B) = 1 and all elements b; ; of B are units in Z(S). Then it follows from
Lemma 2.4 that T preserves I',,.

Conversely, assume that T preserves I',. By applying Theorem 2.1 to
Lemma 4.1, we have that T" preserves lines. By Lemma 2.2, T is a (P,Q, B)-
operator, where all elements of B are units in Z(S). Now, we will show that
a transposing (P, (), B)-operator does not preserve I',,. Suppose m = n > 4
and T(X) = P(X o B)'(Q for some permutation matrices P and Q. Define an
operator L on M, (S) by L(X) = P*T(X)P = (X o B)!QP. Since T preserves
T, if and only if L preserves I',,, we suffice to consider an operator L. Let
X = Z2@® I,_4, where E is the 4 x 4 matrix in (2.8). Then sc(X) = n and
(X o B)" has the 4*® zero column. Thus, (X,0) € T',,, while (L(X),0) ¢ T,
because s¢(L(X)) = sc((X o B)Y) < n — 1. From this contradiction, we have
established that T is a non-transposing (P, Q, B)-operator, where all elements
of B are units in Z(S). That is, T(X) = P(X o B)Q.

It remains to show that s¢(B) = 1. If not, we lose no generality in assuming
that B[L,21,2] has spanning column rank 2. Since M,, ,,(S) has full spanning
column rank, there exists a matrix Y’ € My,,—3 ,—2 (S) such that sc(Y') = n—2.
Consider matrices

2
X =) (biEi; +b;}E;z) and Y =0;@Y'
i=1
in Mys,n(S). Then se(X +Y) = n and hence (X,Y) € T,,. But the first two
columns of (X +Y') o B are equal and hence it follows from Lemma 2.4 that
se(T(X +Y)) = se(P((X +Y) 0 B)Q) = se(X + Y) o B) <n—1,
that is, (T'(X),T(Y)) ¢ I's,, a contradiction. Thus, sc(B) = 1. O

Corollary 4.3. Let T be a surjective linear operator on M, o (S), where m # n
orm=mn >4, and M, . (S) have full spanning column rank. If S is commuta-
tive, and T preserves I'y, then T is a non-transposing (U, V)-operator.

Proof. Suppose T preserves I';,. By Theorem 4.2, T is a non-transposing
(P, Q, B)-operator on My, ,(S), where sc(B) = 1 and all elements b; ; of B
are units in Z(S). Since S is commutative, it follows from Lemma 2.5 that T
is a non-transposing (U, V)-operator. U
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5. Linear preservers of I'g

Recall that for S C Rt
I'r={(X,Y) € Mpn(8)* | se(X +Y) = |p(X) = p(Y)]}.

Lemma 5.1. Let S be any subsemiring of RT, o be a permutation of A n,
and T be defined by T(E; ;) = b; ;E,(; jy for all (i,5) € A 5, where all b; ; are
units and min{m,n} > 3. If T preserves g, then T preserves lines.

Proof. Since the sum of three distinct weighted cells has spanning column rank
at most 3, it follows that p(T(E11 + E12 + E21)) < 3. Now, for X = Ey 1 +
Ei2+ Ey1 and Y = Es 5, we have that (X,Y) € I'g, and the image of ¥ is a
single weighted cell, and hence p(T(Y)) = 1. Now, if p(T(X)) = 3, then T(X +
Y’) must have spanning column rank 3 or 4, and hence (T'(X),T(Y)) ¢ I'r, a
contradiction. If p(T'(X)) = 1, clearly (T(X),T(Y)) ¢ g since T(X +Y) # O.
Thus p(T(X)) = 2, and se¢(T(X +Y)) = 1. However it is obvious that if a
sum of four weighted cells has the spanning column rank 1, then they lie either
in a line or in the intersection of two rows and two columns. The matrix
T(X +7Y) is a sum of four weighted cells. These cells do not lie in a line
since p(T(X)) = 2. Thus T(X +Y) must be the sum of four weighted cells
which lie in the intersection of two rows and two columns. Similarly, for any
i,5,k,0, T(Eij + E; . + E ; + Ep ;) must lie in the intersection of two rows
and two columns. It follows that any two rows must be mapped into two
lines. By the bijectivity of T, if some pair of two rows is mapped into two rows
(resp. columns), any pair of two rows is mapped into two rows (resp. columns).
Similarly, if some pair of two columns is mapped into two rows (resp. columns),
any pair of two columns is mapped into two rows (resp. columns).

Now, the image of three rows is contained in three lines, two of which are
the image of two rows, thus, every row is mapped into a line. Similarly for
columns. Thus, T preserves lines. a

Theorem 5.2. Let S be any subsemiring of RT, m#Znorm=n>4, and T
be a surjective linear operator on My, ,(S). Then T preserves I'g if and only
if T is a non-transposing (P, Q, B)-operator and sc¢(B)=1.

Proof. One can easily show that all non-transposing (P, (), B)-operators pre-
serve ['g.

Suppose T' preserves I'r. By applying Theorem 2.1 to Lemma 5.1, T' pre-
serves lines. Lemma 2.2 implies that T is a (P, @, B)-operator, where all el-
ements of B are units. Now, we will show that f m = n > 4 and T is a
transposing (P, ), B)-operator, then 17" does not preserve I'p. Similar to the
proof of Theorem 4.2, we suffice to consider an operator X — (X o B)!QP,
where P, @) € M, (S) are permutation matrices. Let X = Z & O,,_4, where =
is the matrix in (2.8). Then we can easily show that

se(X) = p(X) = p(X') = p((X 0 B)'QP) =3
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and
sc(XY) = sc¢((X o B)'QP) = 4.
Thus, (X,0) € T'g, while ((X o B)!QP,0) ¢ T'g. Therefore, T is a non-
transposing (P, @, B)-operator and hence T(X) = P(X o B)Q, where all ele-
ments of B are units.
Let us check that sc(B) = 1. Without loss of generality we assume that
n<m. Let Z=37" . > Eg;. Consider matrices

X=7Z+ Z Ez"j and Y = Z Ei’j.
1<j<i<n 1<i<j<n
Then we can easily show that
p(X) =n=p(T(X)) and p(Y)=n-1=p(T(Y)).

Thus, se(X +Y) = se(J) =1 = p(X) — p(Y), and hence (X,Y) € T'g. Since
T preserves I'g, it follows from Lemma 2.4 that

s¢(B) = se(P(JoB)Q)=sc(P((XoB)+ (Y oB))Q)
= se(T(X) + T(Y)) = p(T(X)) - p(T(¥)) = 1.
Thus the theorem holds. O
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