CONVERGENCE OF APPROXIMATING PATHS TO
SOLUTIONS OF VARIATIONAL INEQUALITIES INVOLVING
NON-LIPSCHITZIAN MAPPINGS

JONG SOO JUNG† AND DAYA RAM SAHU ‡

ABSTRACT. Let X be a real reflexive Banach space with a uniformly
Gâteaux differentiable norm, C a nonempty closed convex subset of $X, T :$
$C \to X$ a continuous pseudocontractive mapping, and $A : C \to C$ a
continuous strongly pseudocontractive mapping. We show the existence
of a path $\{x_t\}$ satisfying $x_t = tAx_t + (1-t)Tx_t, \ t \in (0,1)$ and prove that
$\{x_t\}$ converges strongly to a fixed point of T, which solves the variational
inequality involving the mapping A. As an application, we give strong
convergence of the path $\{x_t\}$ defined by $x_t = tAx_t + (1-t)(2I-T)x_t$
to a fixed point of firmly pseudocontractive mapping T.

1. Introduction

Let X be a real Banach space with dual X^* and T be a mapping with domain
$D(T)$ and range $R(T)$ in X. Following Morales [12], the mapping T is called
strongly pseudocontractive if for some constant $k < 1$ and for all $x,y \in D(T),$
\begin{equation}
(\lambda - k)||x - y|| \leq ||(\lambda I - T)(x) - (\lambda I - T)(y)||
\end{equation}
for all $\lambda > k$; while T is called a pseudocontraction if (1) holds for $k = 1$. The
mapping T is called Lipschitzian if there exists $L \geq 0$ such that
\[||Tx - Ty|| \leq L||x - y|| \text{ for all } x, y \in D(T).
\]
Otherwise, the mapping is called non-Lipschitzian. The Lipschitzian mapping
T is called nonexpansive if $L = 1$ and is called a contraction if $L < 1$. Every
nonexpansive mapping is a pseudocontractive. The converse is not true. The
example, $Tx = (1 - x^{2/3})x^{1/3}, x \in [0,1]$ is a continuous pseudocontraction which is

Received July 24, 2006.
2000 Mathematics Subject Classification. Primary 47H10, 47J20.
Keywords and phrases. pseudocontractive mapping, strongly pseudocontractive map-
ing, firmly pseudocontractive mapping, nonexpansive mapping, fixed points, uniformly
Gâteaux differentiable norm, variational inequality.
† This paper was supported by Dong-A University Research Fund in 2006.
‡ The second author wishes to acknowledge the financial support of Department of Science

©2008 The Korean Mathematical Society

377
not nonexpansive. Indeed,
\[
\left| T\left(\frac{1}{4^3}\right) - T\left(\frac{1}{2^3}\right) \right| = \left| \left(\frac{15}{16}\right)^{\frac{3}{2}} - \left(\frac{3}{4}\right)^{\frac{3}{2}} \right| = \frac{|(15)^{\frac{3}{2}} - (12)^{\frac{3}{2}}|}{64} > \frac{7}{64} = \left| \frac{1}{4^3} - \frac{1}{2^3} \right|.
\]

A mapping \(T\) with domain \(D(T)\) and range \(R(T)\) in \(X\) is called firmly pseudocontractive if for all \(x, y \in D(T)\),
\[
\|x - y\| \leq \| (1 - \lambda)(x - y) + \lambda (Tx - Ty) \|
\]
for all \(\lambda > 0\). Following Kato [10], we are able to find an equivalent definition for firmly pseudocontractive operators. An operator \(T : D(T) \to R(T)\) is firmly pseudocontractive if and only if for every \(x, y \in D(T)\), there exists \(j(x - y) \in J(x - y)\) such that
\[
\langle Tx - Ty, j(x - y) \rangle \geq \|x - y\|^2,
\]
where \(J : X \to 2^{X^*}\) is the normalized duality mapping which is defined by
\[
J(u) = \{ j \in X^* : \langle u, j \rangle = \| u \|^2, \| j \| = \| u \| \}
\]
(see Browder [2] and Kato [10]). It is an immediate consequence of the Hahn-Banach theorem that \(J(u)\) is nonempty for each \(u \in X\).

The firmly pseudocontractive mappings are characterized by the fact that a mapping \(T\) is firmly pseudocontractive if and only if the mapping \(f = T - I\) is accretive (see Lemma 5).

The concept of firmly pseudocontractive mapping was introduced by Sharma and Sahu [20]. The mapping \(T : D(T) \to R(T)\) is firmly pseudocontractive if and only if \(2I - T\) is pseudocontractive (see Lemma 5).

In [15], Moudafi proposed a viscosity approximation method of selecting a particular fixed point of a given nonexpansive mapping which is a unique solution of a variational inequality in a Hilbert space. He proved the following theorem:

Theorem M (Theorem 2.1, Moudafi [15]). Let \(C\) be a nonempty closed convex subset of a Hilbert space \(H\). Let \(T : C \to C\) be a nonexpansive mapping and \(f : C \to C\) a contraction mapping. Let \(\{x_n\}\) be the sequence defined by the scheme
\[
x_n = \frac{1}{1 + \varepsilon_n} Tx_n + \frac{\varepsilon_n}{1 + \varepsilon_n} f x_n,
\]
where \(\varepsilon_n\) is a sequence \((0, 1)\) with \(\varepsilon_n \to 0\). Then \(\{x_n\}\) converges strongly to the unique solution of the variational inequality:
\[
\langle (I - f)\bar{x}, \bar{x} - x \rangle \leq 0 \text{ for all } x \in F(T).
\]

In other word, \(\bar{x}\) is the unique fixed point of \(P_{F(T)}f\).

Theorem X (Theorem 4.1, Xu [22]). Let C be a nonempty closed convex subset of a uniformly smooth Banach space X, $f \in \Pi_C$ the set of all contractions on C and $T : C \to C$ a nonexpansive mapping with $F(T) \neq \emptyset$. Then the path $\{x_t\}$ defined by

$$x_t = tfx_t + (1-t)Tx_t, \quad t \in (0,1)$$

converges strongly to a point in $F(T)$. If we define $Q : \Pi_C \to F(T)$ by

$$Q(f) = \lim_{t \to 0^+} x_t, \quad f \in \Pi_C,$$

then $Q(f)$ solves the variational inequality:

$$\langle (I-f)Q(f), J(Q(f) - v) \rangle \leq 0, \quad f \in \Pi_C \text{ and } v \in F(T).$$

It is well known that for certain applications the Lipschitzian assumption of mapping becomes a rather strong condition. In view of this the following natural question arises:

Question. Is it possible to replace contraction mapping f involving in variational inequality (2) by a non-Lipschitzian mapping A?

Motivated and inspired by the above question, we will consider a more general situation. In this paper our purpose is to prove that in reflexive Banach space X, for pseudocontractive mapping T, the path $\{x_t\}$ defined by

$$x_t = tAx_t + (1-t)Tx_t$$

converges strongly to a fixed point of T, which solves the certain variational inequality involving non-Lipschitzian mapping A. Using our results, we derive strong convergence theorems for firmly pseudocontractive mappings. Our results generalize and improve the results of Jung and Kim [9], Morales [13], Morales and Jung [14], Moudafi [15], O’Hara, Pillay, and Xu [16], Reich [18], Schu [19], Sharma and Sahu [20], and Xu [21, 22].

2. Preliminaries and lemmas

Recall that a Banach space X is said to be smooth if the limit

$$\lim_{t \to 0^+} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each x and y in $S = \{x \in X : \|x\| = 1\}$. In this case, the norm of X is said to be Gâteaux differentiable. It is said to be uniformly Gâteaux differentiable if for each $y \in S$, this limit is attained uniformly for $x \in S$. It is well known that every uniformly smooth space (e.g., L_p space, $1 < p < \infty$) has uniformly Gâteaux differentiable norm (see e.g., [3]).

When $\{x_n\}$ is a sequence in X, then $x_n \to x$ (resp., $x_n \rightharpoonup x$, $x_n \rightharpoonup x$) will denote strong (resp., weak, weak*) convergence of the sequence $\{x_n\}$ to x.
Suppose that the duality mapping J is single valued. Then J is said to be weakly sequentially continuous if, for each $\{x_n\} \in X$ with $x_n \rightharpoonup x$, $J(x_n) \rightharpoonup J(x)$.

A Banach space X is said to satisfy Opial’s condition (see for example [17]) if for each sequence $\{x_n\}$ in X which converges weakly to a point $x \in X$ we have

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\| \quad \text{for all } y \in X.$$

It is well-known that, if X admits a weakly sequentially continuous duality mapping, then X satisfies Opial’s condition.

Let X be a Banach space and let T be a mapping with domain $D(T)$ and range $R(T)$ in X. The mapping T is said to be demiclosed at a point $p \in D(T)$ if whenever $\{x_n\}$ is a sequence in $D(T)$ which converges weakly to a point $z \in D(T)$ and $\{Tx_n\}$ converges strongly to p, then $Tz = p$. The mapping T is said to be demicontinuous if, whenever a sequence $\{x_n\}$ in C converges strongly to $x \in C$, then $\{Tx_n\}$ converges weakly to Tx. The set of fixed point of T will be denoted by $F(T)$.

Let C be a convex subset of X, D a nonempty subset of C, and P a retraction from C onto D, that is, $Px = x$ for each $x \in D$. A retraction P is said to be sunny if $P(Px + t(x - Px)) = Px$ for each $x \in C$ and $t \geq 0$ with $Px + t(x - Px) \in C$. If the sunny retraction P is also nonexpansive, then D is said to be a sunny nonexpansive retract of C.

Let C be a nonempty closed convex subset of a Banach space X. For $x \in C$, let

$$I_C(x) = \{y \in X : y = x + \lambda(z - x), z \in C \text{ and } \lambda \geq 0\}.$$

$I_C(x)$ is called the inward set of $x \in C$ with respect to C (see, for example [5]). $I_C(x)$ is a convex set containing C. A mapping $T : C \to X$ is said to be satisfying the inward condition if $Tx \in I_C(x)$ for all $x \in C$, T is also said to be satisfying the weakly inward condition if for each $x \in C, Tx \in I_C(x)$ ($I_C(x)$ is the closure of $I_C(x)$). It is well-known (Lemma 18.1, Deimling [5]) that $T : C \to X$ is weakly inward if and only if $\lim_{\lambda \to 0^+} \lambda^{-1}d((1 - \lambda)x + \lambda Tx, C) = 0$ for all $x \in C$, where d denotes the distance to C.

Recall that a Banach limit LIM is a bounded linear functional on l^∞ such that

$$||LIM|| = 1, \liminf_{n \to \infty} t_n \leq LIM_n t_n \leq \limsup_{n \to \infty} t_n,$$

and $LIM_n t_n = LIM_n t_{n+1}$ for all $t_n \in l^\infty$.

In what follows, we shall make use of the following lemmas.

Lemma 1 (Corollary 5.1, Cioranescu [3]). If X is a smooth Banach space, then any duality mapping on X is norm to weak* continuous.

Lemma 2 (Lemma 13.1, Goebel and Reich [6]). Let C be a convex subset of a smooth Banach space X, D a non-empty subset of C and P a retraction from C onto D. Then the following are equivalent:

(a) P is a sunny and nonexpansive;
(b) $\langle x - Px, J(z - Px) \rangle \leq 0$ for all $x \in C, z \in D$;
(c) $\langle x - y, J(Px - Py) \rangle \geq \|Px - Py\|^2$ for all $x, y \in C$.

Lemma 3 (Lemma 1, Ha and Jung [8]). Let X be a Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X and $\{x_n\}$ a bounded sequence in X. Let LIM be a Banach limit and $y \in C$. Then

$$\text{LIM}_n \|x_n - y\|^2 = \min_{z \in C} \text{LIM}_n \|x_n - z\|^2$$

if and only if

$$\text{LIM}_n \langle x - y, J(x_n - y) \rangle \leq 0 \text{ for all } x \in C.$$

Lemma 4 (Theorem 10.3, Goebel and Kirk [7]). Let X be a reflexive Banach space which satisfies Opial condition, C a nonempty closed convex subset of X and $T : C \to X$ a nonexpansive mapping. Then the mapping $I - T$ is demi-closed on C, where I is the identity mapping.

Lemma 5 (Lemma 2.2, Sharma and Sahu [20]). Let X be a Banach space and T a mapping with domain and range in X. Then following are equivalent:

(a) T is firmly pseudocontractive;
(b) $2I - T$ is pseudocontractive;
(c) $T - I$ is accretive.

Lemma 6 (Corollary 1, Deimling [4]). Let C be a nonempty closed subset of a Banach space X and $T : C \to X$ a continuous strongly pseudocontractive mapping with constant $k \in [0, 1)$ satisfying

$$\lim_{\lambda \to 0^+} \lambda^{-1}d((1 - \lambda)x + \lambda Tx, C) = 0 \text{ for all } x \in C,$$

where d denotes the distance to C (equivalently, the weakly inward condition under additional assumption that C is convex). Then T has a unique fixed point.

Lemma 7. Let C be a nonempty closed convex subset of a smooth Banach space X. Let $A : C \to C$ be a continuous strongly pseudocontractive with constant $k \in [0, 1)$. Then variational inequality problem $\text{VIP}(I - A, C)$:

$$\text{to find } u \in C \text{ such that } \langle (I - A)u, J(u - x) \rangle \leq 0 \text{ for all } x \in C$$

has at most one solution.

Proof. Let x^* and y^* be two distinct solutions of $\text{VIP}(I - A, C)$. Then

$$\langle x^* - Ax^*, J(x^* - y^*) \rangle \leq 0 \text{ and } \langle y^* - Ay^*, J(y^* - x^*) \rangle \leq 0.$$

Adding these inequalities, we get

$$\langle x^* - y^* - (Ax^* - Ay^*), J(x^* - y^*) \rangle \leq 0,$$

which implies that

$$\|x^* - y^*\|^2 \leq \langle Ax^* - Ay^*, J(x^* - y^*) \rangle \leq k\|x^* - y^*\|^2,$$

a contradiction. Therefore, $x^* = y^*$.

3. Main results

Before proving main results we need the following propositions:

Proposition 1. Let C be a nonempty closed convex subset of a normed space X. Let $A : C \to C$ be a mapping and $T : C \to X$ another mapping satisfying the weakly inward condition. Then for each $\lambda \in (0, 1)$, the mapping $T^A_\lambda : C \to X$ defined by
\[
T^A_\lambda x = (1 - \lambda)Ax + \lambda Tx, \quad x \in C
\]
satisfies the weakly inward condition.

Proof. Let $x \in C$ and $\varepsilon > 0$. Since T is weakly inward, there exists $y \in I_C(x)$ such that $\|y - Tx\| \leq \varepsilon$, and since C is convex, there exists t_0 such that $z_t := (1 - t)x + ty \in C$ for $0 < t \leq t_0$. For these t we have
\[
d((1 - t)x + tTx, C) \leq \|(1 - t)x + tTx - z_t\| \leq t\varepsilon.
\]
Moreover, since C is convex,
\[
w_t = \frac{(1 - t + \lambda t)x + (1 - \lambda)tx + \lambda z_t}{1 + \lambda} \in C
\]
for all $\lambda \in (0, 1)$ whenever $t \in (0, 1)$. Set $\alpha := \frac{t}{1 + \lambda}$ and let $t \in (0, 1)$. Then we have
\[
d((1 - \alpha)x + \alpha T^A_\lambda x, C)
\]
\[
\leq \|(1 - \alpha)x + \alpha T^A_\lambda x - w_t\|
\]
\[
= \|(1 + \lambda - t)x + \lambda T^A_\lambda x - (1 + \lambda)w_t\|/(1 + \lambda)
\]
\[
= \|(1 + \lambda - t)x + \lambda [(1 - \lambda)Ax + \lambda Tx] - (1 + \lambda)w_t\|/(1 + \lambda)
\]
\[
= \frac{\lambda}{1 + \lambda} \|(1 - t)x + tTx - z_t\| \leq \frac{t}{1 + \lambda} \varepsilon,
\]
and hence $\lim_{\alpha \to 0^+} \alpha^{-1}d((1 - \alpha)x + \alpha T^A_\lambda x, C) = 0$. By (Lemma 18.1, Deimling [5]), T^A_λ satisfies the weakly inward condition. \hfill \Box

Proposition 2. Let C be a nonempty closed convex subset of a Banach space X. Let $A : C \to C$ be a continuous strongly pseudocontractive with constant $k \in [0, 1)$ and $T : C \to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. Then

(a) for each $t \in (0, 1)$, there exists unique solution $x_t \in C$ of equation
(3)
\[
x = tAx + (1 - t)Tx,
\]

(b) Moreover, if v is a fixed point of T, then for each $t \in (0, 1)$, there exists $j(x_t - v) \in J(x_t - v)$ such that
\[
\langle x_t - Ax_t, j(x_t - v) \rangle \leq 0,
\]

(c) $\{x_t\}$ is bounded.
Proof. (a) For each \(t \in (0, 1) \), the mapping \(T^A_t : C \to X \) defined by
\[
T^A_t x = tAx + (1 - t)Tx, \quad x \in C
\]
is continuous strongly pseudocontractive with constant \(1 - t(1 - k) \in (0, 1) \).
Indeed, for \(x, y \in C \), there exists \(j(x - y) \in J(x - y) \) such that
\[
\langle T^A_t x - T^A_t y, j(x - y) \rangle = t\langle Ax - Ay, j(x - y) \rangle \\
+ (1 - t)\langle Tx - Ty, j(x - y) \rangle \\
\leq tk\|x - y\|^2 + (1 - t)\|Tx - Ty\|\|x - y\| \\
\leq (1 - t(1 - k))\|x - y\|^2.
\]
From Proposition 1, \(T^A_t \) satisfies the weakly inward condition. Thus, by Lemma 6, there exists a unique fixed point \(x_t \in C \) of \(T^A_t \) such that
\[
(4) \quad x_t = tAx_t + (1 - t)Tx_t.
\]
(b) Suppose that \(v \) is a fixed point of \(T \). Since \(T \) is pseudocontractive, for \(j(x_t - v) \in J(x_t - v) \), we have
\[
\langle x_t - Tx_t, j(x_t - v) \rangle = \langle x_t - v + Tv - Tx_t, j(x_t - v) \rangle \\
= \|x_t - v\|^2 - \langle Tx_t -Tv, j(x_t - v) \rangle \geq 0.
\]
Hence from (4) we have
\[
\langle x_t - Ax_t, j(x_t - v) \rangle = (1 - t)\langle Tx_t - Ax_t, j(x_t - v) \rangle \\
\leq (1 - t)\langle Tx_t - x_t + x_t - Ax_t, j(x_t - v) \rangle,
\]
which implies that
\[
\langle x_t - Ax_t, j(x_t - v) \rangle \leq 0.
\]
(c) By strong pseudocontractivity of \(A \), there exists \(j(x_t - v) \in J(x_t - v) \) such that
\[
\langle Ax_t - Av, j(x_t - v) \rangle \leq k\|x_t - v\|^2.
\]
Using Proposition 2(b), we obtain
\[
\|x_t - v\|^2 = \langle x_t - v, j(x_t - v) \rangle \\
= \langle x_t - Ax_t, j(x_t - v) \rangle + \langle Ax_t - Av, j(x_t - v) \rangle \\
+ \langle Av - v, j(x_t - v) \rangle \\
\leq k\|x_t - v\|^2 + \langle Av - v, j(x_t - v) \rangle.
\]
Thus,
\[
\|x_t - v\|^2 \leq \frac{1}{1 - k}\langle Av - v, j(x_t - v) \rangle,
\]
which yields
\[
\|x_t - v\| \leq \frac{1}{1 - k}\|Av - v\|.
\]
Therefore, \(\{x_t\} \) is bounded. \(\Box \)
Theorem 1. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X, $A : C \to C$ a continuous strongly pseudocontractive mapping with constant $k \in [0,1)$ and $T : C \to X$ a continuous pseudocontractive mapping satisfying the weakly inward condition. Suppose that every closed convex bounded subset of C has fixed point property for nonexpansive self-mappings. Suppose also that the set

$$E = \{ x \in C : Tx = \lambda x + (1 - \lambda)Ax \text{ for some } \lambda > 1 \}$$

is bounded. For $t \in (0,1)$, let $\{x_t\}$ be the path defined by (4). Then we have the following:

(a) $\lim_{t \to 0^+} x_t = \tilde{x}$ exists,

(b) \tilde{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$((I - A)\tilde{x}, J(\tilde{x} - v)) \leq 0 \text{ for all } v \in F(T).$$

Proof. (a) It follows from Theorem 6 of [11] that the mapping $2I - T$ has a nonexpansive inverse, denoted by g, which maps C into itself with $F(T) = F(g)$. By Proposition 2(c), $\{x_t\}$ is bounded and hence, the sets $\{Tx_t : t \in (0,1)\}$ and $\{Ax_t : t \in (0,1)\}$ are also bounded. By (4), we have

$$||x_t - Tx_t|| = t||Ax_t - Tx_t|| \to 0 \text{ as } t \to 0^+,$$

which implies that

$$x_t - gx_t \to 0 \text{ as } t \to 0^+. \tag{6}$$

Since X is reflexive, there exists a weakly convergent subsequence $\{x_{t_n}\} \subseteq \{x_t\}$ such that $x_{t_n} \rightharpoonup z$, where $\{t_n\}$ is a sequence in $(0,1)$ such that $t_n \to 0$ as $n \to \infty$.

Now define the function $\varphi : C \to \mathbb{R}$ by

$$\varphi(x) := LIM_n||x_n - x||^2, \quad x \in C.$$

Since X is reflexive, $\varphi(x) \to \infty$ as $||x|| \to \infty$, and φ is continuous convex function, by Theorem 1.2 of [1, p. 79] we have that the set

$$M := \{ y \in C : \varphi(y) = \inf_{x \in C} \varphi(x) \} \tag{7}$$

is nonempty. M is also closed convex and bounded. Moreover, M is invariant under g. In fact, we have for each $y \in M$,

$$\varphi(gy) = LIM_n||x_n - gy||^2$$
$$= LIM_n||gx_n - gy||^2$$
$$\leq LIM_n||x_n - y||^2 = \varphi(y).$$

So, by the hypothesis, there exists a fixed point u of g in M. By Lemma 3, we have

$$LIM_n(z, J(x_n - u)) \leq 0 \text{ for all } z \in C.$$
In particular,

\[(8) \quad LIM_n \langle Au - u, J(x_n - u) \rangle \leq 0.\]

Observe that

\[\|x_n - u\|^2 = \langle x_n - Ax_n, J(x_n - u) \rangle + \langle Ax_n - Au, J(x_n - u) \rangle + \langle Au - u, J(x_n - u) \rangle.\]

By pseudocontractivity of \(T\),

\[(1 - k)\|x_n - u\|^2 \leq \langle x_n - Ax_n, J(x_n - u) \rangle + \langle Au - u, J(x_n - u) \rangle.\]

From (8) and Proposition 2(b), we obtain

\[LIM_n \|x_n - u\|^2 \leq 0.\]

Therefore, there exists a subsequence \(\{x_{n_i}\}\) of \(\{x_n\}\) such that \(x_{n_i} \to u\). Assume that there is another subsequence \(\{x_{n_j}\}\) of \(\{x_n\}\) such that \(x_{n_j} \to \tilde{u}\). Since \(x_n - gx_n \to 0\), it follows that \(\tilde{u} \in F(g)\). Using Proposition 2(b), we have that

\[(9) \quad \langle x_t - Ax_t, J(x_t - v) \rangle \leq 0 \text{ for all } v \in F(T).\]

By norm to weak* uniform continuity of \(J\), we obtain

\[\langle u - Au, J(u - \tilde{u}) \rangle \leq 0 \quad \text{and} \quad \langle \tilde{u} - A\tilde{u}, J(\tilde{u} - u) \rangle \leq 0.\]

Adding these two inequalities yields that

\[\langle u - \tilde{u} + A\tilde{u} - Au, J(u - \tilde{u}) \rangle \leq 0.\]

This implies that

\[\|u - \tilde{u}\|^2 \leq k\|u - \tilde{u}\|^2.\]

Since \(k \in [0, 1]\), it follows that \(u = \tilde{u}\). Thus, \(\{x_n\}\) converges strongly to \(u\).

We finally prove that the entire net \(\{x_t\}\) converges strongly. To this end, we assume that \(\{t_n'\}\) is another subsequence in \((0, 1)\) such that \(x_{t_{n'}} \to u'\) as \(t_{n'} \to 0\). By (6), we obtain \(u' \in F(T)\). From (9), we have that

\[\langle u - Au, J(u - u') \rangle \leq 0 \quad \text{and} \quad \langle u' - Au', J(u' - u) \rangle \leq 0.\]

We must have \(u = u'\). Therefore, \(\{x_t\}\) converges strongly to \(u \in F(T)\).

(b) Since \(x_t \to u \in F(T)\), it follows from Proposition 2(b) and Lemma 7 that \(u\) is a unique point satisfying

\[\langle u - Au, J(u - v) \rangle \leq 0 \text{ for all } v \in F(T).\]

\[\square\]

Corollary 1. Let \(X\) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C\) a nonempty closed convex subset of \(X\), \(A : C \to C\) a continuous strongly pseudocontractive mapping with constant \(k \in [0, 1]\) and \(T : C \to C\) a continuous pseudocontractive mapping. Suppose that every closed convex bounded subset of \(C\) has fixed point property for nonexpansive self-mappings. Suppose also that the set

\[E = \{x \in C : Tx = \lambda x + (1 - \lambda)Ax \text{ for some } \lambda > 1\}\]
is bounded. For \(t \in (0, 1) \), let \(\{x_t\} \) be the path defined by (4). Then we have the following:

(a) \(\lim_{t \to 0^+} x_t = \hat{x} \) exists,

(b) \(\hat{x} \) is a fixed point of \(T \) and it is the unique solution of the variational inequality:

\[
\langle (I - A)\hat{x}, J(\hat{x} - v) \rangle \leq 0 \text{ for all } v \in F(T).
\]

Corollary 2 (Theorem 1, Morales and Jung [14]). Let \(X \) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(C \) nonempty closed convex subset of \(X \) and \(T : C \to X \) a continuous pseudocontractive mapping satisfying the weakly inward condition. Suppose every closed convex bounded subset of \(C \) has fixed point property for nonexpansive self mappings. If there exists \(u_0 \in C \) such that the set

\[
E = \{ x \in C : Tx = \lambda x + (1 - \lambda)u_0 \text{ for some } \lambda > 1 \}
\]

is bounded, then the path \(\{x_t : t \in (0, 1)\} \) defined by

\[
x_t = tu_0 + (1 - t)Tx_t
\]

converges strongly to a fixed point of \(T \).

Proof. In this case the mapping \(A : C \to C \) defined by \(Ax = u_0 \) for all \(x \in C \) is continuous strongly pseudocontractive with constant 0. The proof follows from Theorem 1. \(\square \)

Remark 1. (1) Theorem 1 is also an extension of Theorem 5 of Morales [13] in terms of the space itself and the viscosity type method.

(2) Corollary 1 generalizes the corresponding results in Ha and Jung [8], Moudafi [15], Reich [18], and Xu [22] to ones for pseudocontractive mappings.

(3) Corollary 2 improves Theorem 1 of Xu [21], which is done for nonexpansive mapping and the inwardness condition, as well as Theorem 1 of Jung and Kim [9] for nonexpansive mappings under the additional assumption that \(C \) is a sunny nonexpansive retract of \(X \).

(4) In Theorem 1 and Corollary 1, boundedness of the set \(E \) can be replaced by the assumption that \(F(T) \neq \emptyset \).

We now replace the fixed point property assumption, mentioned in Theorem 1 by imposing certain conditions on the space \(X \) or on the mapping \(T \).

Theorem 2. Let \(X \) be a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, \(C \) a nonempty closed convex subset of \(X \), \(A : C \to C \) a continuous strongly pseudocontractive mapping with constant \(k \in [0, 1) \) and \(T : C \to X \) a continuous pseudocontractive mapping satisfying the weakly inward condition. If \(T \) has a fixed point in \(C \), then the path \(\{x_t\} \) defined by (4) converges strongly to a fixed point of \(T \), which is a unique solution of variational inequality:

\[
\langle (I - A)\hat{x}, J(\hat{x} - v) \rangle \leq 0 \text{ for all } v \in F(T).
\]
Proof. To be able to use the argument of the proof of Theorem 1, we just need to show that the set \(M \) defined by (7) has a fixed point of \(g \). Since \(F(T) = F(g) \neq \emptyset \), let \(v \in F(g) \). Then the set \(M_0 \) defined by
\[
M_0 = \{ u \in M : ||u - v|| = \inf_{x \in M} ||x - v|| \}
\]
is singleton since \(X \) is strictly convex. Let \(M_0 = \{ u_0 \} \) for some \(u_0 \in M \). Observe that
\[
||gu_0 - v|| = ||gu_0 - gv|| \leq ||u_0 - v|| = \inf_{x \in M} ||x - v||.
\]
Therefore \(gu_0 = u_0 \). We now follow the proof of Theorem 1. \(\Box \)

Next we obtain a convergence of path described by (4) in which continuity assumption of operator \(T \) is weaken and convexity of \(C \) is dispensed.

Theorem 3. Let \(X \) be a reflexive Banach space with a weakly continuous duality mapping \(J : X \to X^* \). Let \(C \) be a nonempty closed subset of \(X \), \(A : C \to C \) a continuous strongly pseudocontractive mapping with constant \(k \in [0,1) \) and \(T : C \to X \) a demicontinuous pseudocontractive mapping such that the equation
\[
x = tAx + (1 - t)Tx
\]
has a solution \(x_t \) in \(C \) for each \(t \in [0,1) \). Suppose the path \(\{ x_t \} \) is bounded. Then we have the following:

(a) \(\lim_{t \to 0^+} x_t = \hat{x} \) exists,

(b) \(\hat{x} \) is a fixed point of \(T \) and it is the unique solution of the variational inequality:
\[
\langle (I - A)\hat{x}, J(\hat{x} - v) \rangle \leq 0 \text{ for all } v \in F(T).
\]

Proof. (a) Since \(\{ x_t \} \) is bounded, it follows from reflexivity of \(X \) that there exists a subsequence \(\{ x_{t_n} \} \subseteq \{ x_t \} \) such that \(x_{t_n} \rightharpoonup z \in C \) as \(t_n \to 0 \), where \(\{ t_n \} \) is a sequence in \((0,1) \) such that \(\lim_{n \to \infty} t_n = 0 \). Set \(x_n := x_{t_n} \). As in Theorem 1, \(g : C \to C \) a nonexpansive with \(F(T) = F(g) \). Also \(x_n - gx_n \to 0 \) as \(n \to \infty \). Since \(J \) is weakly continuous, it follows from Lemma 4 that \(z \in F(g) \). By (5), we get
\[
||x_n - z||^2 \leq \frac{1}{1 - k} \langle Az - z, J(x_n - z) \rangle.
\]
Since \(J \) is weakly continuous duality mapping, it follows that \(x_n \rightharpoonup z \) as \(n \to \infty \).

We have already proved that there exists a subsequence \(\{ x_{t_{n'}} \} \) of \(\{ x_t : t \in (0,1) \} \) that converges strongly to a point \(z \in F(T) \). Now it remains to prove that the entire net \(\{ x_t \} \) converges strongly to \(z \). Suppose, for contradiction, that there exists another sequence \(\{ x_{t_{n''}} \} \subseteq \{ x_t \} \) such that \(x_{t_{n''}} \rightharpoonup z' \neq z \) as \(t_{n''} \to 0 \). Then, we have \(z' \in F(T) \). From (9), we have
\[
\langle z - Az, J(z - z') \rangle \leq 0 \text{ and } \langle z'-Az', J(z - z') \rangle \leq 0.
\]
This gives that \(z = z' \). Therefore, \(\lim_{t \to 0^+} x_t \) exists and \(\lim_{t \to 0^+} x_t = z \in F(T) \).
(b) Since \(\lim_{t \to 0^+} x_t = z \), it follows Proposition 2(b) and Lemma 7 that \(z \) is a unique point satisfying
\[
(\langle (I - A)z, J(z - v) \rangle) \leq 0 \quad \text{for all } v \in F(T).
\]

\[\square\]

Corollary 3 (Theorem 1.2, Schu [19]). Let \(X \) be a reflexive Banach space with a weakly continuous duality mapping \(J: X \to X^* \). Let \(C \) be a nonempty closed convex bounded subset of \(X \), \(u \in C \) and \(T: C \to C \) a continuous pseudocontractive mapping. Let \(\{\lambda_n\} \) be a sequence in \((0,1)\) with \(\lim_{n \to \infty} \lambda_n = 1 \). Then

(a) for each \(n \in \mathbb{N} \), there is exactly one \(x_n \in C \) such that
\[
x_n = (1 - \lambda_n)u + \lambda_nTx_n,
\]

(b) \(\{x_n\} \) converges strongly to a fixed point of \(T \).

Remark 2. By putting \(Ax = u \) for all \(x \in C \) in Theorem 2 and Theorem 3, we can also obtain Theorem 2 and Theorem 3 of Morales and Jung [14] as Corollary 2.

4. Applications

In 1980, Reich [18] proved the following theorem.

Theorem R (Reich [18]). Let \(X \) be a uniformly smooth Banach space and \(C \) a nonempty closed convex subset of \(X \). Let \(T: C \to C \) be a nonexpansive mapping with a fixed point and let \(z \in C \). For each \(t \in (0,1) \), let \(x_t \) be given by \(x_t = tz + (1-t)Tx_t \). Then \(\{x_t\}_{t < 1} \) converges to a fixed point of \(T \) as \(t \to 0^+ \). Thus,
\[
Q(z) := s - \lim_{t \to 0^+} z_t
\]
defines the unique sunny nonexpansive retraction form \(C \) onto \(F(T) \).

O'Hara, Pillay and Xu [16] introduced the Reich's property.

Definition 1. A Banach space \(X \) is said to have **Reich property** if for any closed and convex subset \(C \) of \(X \), any nonexpansive mapping \(T: C \to C \) with a fixed point and any \(z \in C \), \(\{x_t\} \) defined by \(x_t = tz + (1-t)Tx_t \) converges strongly to a fixed point of \(T \) as \(t \to 0^+ \).

Thus, every uniformly smooth Banach space has Reich’s property. Let \(C \) be a nonempty closed convex subset of a Banach space \(X \) and \(T: C \to C \) a pseudocontractive mapping. Let \(\Sigma_C \) denote the set of all strongly pseudocontractive mappings \(A: C \to C \) with constant \(k \in [0,1) \). We now introduce the following property:

Definition 2. We say that a Banach space \(X \) has **property (S)** if for any closed convex subset \(C \) of \(X \), any pseudocontractive mapping \(T: C \to C \) with \(F(T) \neq \emptyset \) and any \(A \in \Sigma_C \), the path \(\{x_t\} \) defined by (4) converges strongly to a fixed point of \(T \) as \(t \to 0^+ \).
The following theorem shows that property (S) plays a key role in the existence of sunny nonexpansive retraction.

Theorem 4. Let X be a smooth Banach space with property (S). Let C be a nonempty closed convex subset of X and $T : C \to C$ a pseudocontractive mapping with $F(T) \neq \emptyset$. If we define $Q : \Sigma_C \to F(T)$ by

$$Q(A) := \lim_{t \to 0^+} x_t, \quad A \in \Sigma_C,$$

then $(AQ(A) - BQ(B), J(Q(A) - Q(B))) \geq \|Q(A) - Q(B)\|^2$ for all $A, B \in \Sigma_C$. In particular, if $A = u \in C$ is a constant, then Q is the sunny nonexpansive retraction from C onto $F(T)$.

Proof. For any $A \in \Sigma_C$ and $t \in (0, 1)$, let x_t be the unique point in C such that $x_t = tAx_t + (1 - t)Tx_t$. By Property (S), $\lim_{t \to 0} x_t$ exists; hence $Q(A) = \lim_{t \to 0} x_t$. By Proposition 2(b), we have

$$\langle x_t - Ax_t, J(x_t - v) \rangle \leq 0 \text{ for all } v \in F(T).$$

Taking the limit as $t \to 0^+$ and using Lemma 1, we obtain

$$\langle Q(A) - AQ(A), J(Q(A) - v) \rangle \leq 0.$$

Thus, for $A, B \in \Sigma_C$, we have

$$\langle Q(A) - AQ(A), J(Q(A) - Q(B)) \rangle \leq 0$$

and

$$\langle Q(B) - BQ(B), J(Q(B) - Q(A)) \rangle \leq 0.$$

Adding these two inequalities, we get

$$\langle Q(A) - AQ(A) + BQ(B) - Q(B), J(Q(A) - Q(B)) \rangle \leq 0.$$

Therefore,

$$\|Q(A) - Q(B)\|^2 \leq \langle AQ(A) - BQ(B), J(Q(A) - Q(B)) \rangle.$$

If $A = u$ and $B = v$ then

$$\langle u - v, J(Qu - Qv) \rangle \geq \|Qu - Qv\|^2.$$

By Lemma 2(c), Q is a sunny nonexpansive retraction from C onto $F(T)$. \(\square\)

The following theorem extends Theorem R to one for pseudocontractive mapping. This also improves Theorem 5 of Morales [13].

Theorem 5. Let X be a reflexive Banach space with a uniformly Gâteaux differentiable norm, C a nonempty closed convex subset of X and $T : C \to X$ a continuous pseudocontractive mapping with $F(T) \neq \emptyset$. Suppose that every closed convex bounded subset of C has fixed point property for nonexpansive self-mappings. If T satisfies the weakly inward condition, then there exists a unique sunny nonexpansive retraction $Q : C \to F(T)$.
Proof. For any \(u \in C \) and \(t \in (0,1) \), let \(x_t \) be the unique point in \(C \) such that \(x_t = tu + (1-t)T x_t \). By Theorem 1, \(X \) has property (S) and hence by Theorem 4, there exists a unique sunny nonexpansive retraction form \(C \) onto \(F(T) \) which is given by \(Q(u) = \lim_{t \to 0^+} x_t \).

We now generalize Theorem 3.10 of O’Hara, Pillay and Xu [16] to pseudocontractive one.

Theorem 6. Let \(X \) be a reflexive Banach space with a weakly continuous duality mapping \(J : X \to X^* \). \(C \) a nonempty closed convex subset of \(X \) and \(T : C \to X \) a continuous pseudocontractive mapping with \(F(T) \neq \emptyset \). If \(T \) satisfies the weakly inward condition, then there exists a unique sunny nonexpansive retraction \(Q : C \to F(T) \).

Proof. The definition of the weak continuity of duality mapping \(J \) implies that \(X \) is smooth. For any \(u \in C \) and \(t \in (0,1) \), let \(x_t \) be the unique point in \(C \) such that \(x_t = tu + (1-t)T x_t \). By Corollary 4, \(X \) has property (S) and hence by Theorem 4, there exists a unique sunny nonexpansive retraction form \(C \) onto \(F(T) \) which is given by \(Q(u) = \lim_{t \to 0^+} x_t \).

Finally, using Lemma 5, Theorem 1 and Theorem 3, we derive strong convergence theorems for firmly pseudocontractive mappings.

Theorem 7. Let \(X \) be a reflexive Banach space with a uniformly Gâteaux differentiable norm, \(A : X \to X \) a continuous strongly pseudocontractive mapping with constant \(k \in [0,1) \) and \(T : X \to X \) continuous firmly pseudocontractive mapping. Suppose that every closed convex bounded subset of \(X \) has fixed point property for nonexpansive self mappings. Suppose also that the set

\[
E' = \{ x \in X : T x = (2 - \lambda)x + (\lambda - 1)A x \text{ for some } \lambda > 1 \}
\]

is bounded. Then we have the following:

(a) For each \(t \in (0,1) \), there is a path \(\{x_t\} \) in \(X \) defined by

\[
x_t = tA x_t + (1-t)(2I - T)x_t
\]

such that \(\lim_{t \to 0^+} x_t = \bar{x} \) exists,

(b) \(\bar{x} \) is a fixed point of \(T \) and it is the unique solution of variational inequality:

\[
\langle (I - A)\bar{x}, J(\bar{x} - v) \rangle \text{ for all } v \in F(T).
\]

Theorem 8. Let \(X \) be a reflexive Banach space with a weakly continuous duality mapping \(J : X \to X^* \). Let \(A : X \to X \) be a continuous strongly pseudocontractive mapping with constant \(k \in [0,1) \) and \(T : X \to X \) a demicontinuous firmly pseudocontractive mapping such that the equation

\[
x = tA x + (1-t)(2I - T)x
\]
has a solution x_t in C for each $t \in [0, 1)$. Suppose the path $\{x_t\}$ is bounded. Then we have the following:

(a) $\lim_{t \to 0^+} x_t = \bar{x}$ exists,

(b) \bar{x} is a fixed point of T and it is the unique solution of the variational inequality:

$$\langle (I - A)\bar{x}, J(\bar{x} - v) \rangle \leq 0 \text{ for all } v \in F(T).$$

References

JONG SOO JUNG
DEPARTMENT OF MATHEMATICS
DONG-A UNIVERSITY
BUSAN 604-714, KOREA
E-mail address: jungjs@donga.ac.kr

DAYA RAM SAHU
DEPARTMENT OF APPLIED MATHEMATICS
SHRI SHANKARACHARYA COLLEGE OF ENGINEERING AND TECHNOLOGY
JUNWANI, BHILAI - 490020, INDIA
CURRENT ADDRESS
DEPARTMENT OF MATHEMATICS
BANARAS HINDU UNIVERSITY
VARANASI - 221005, INDIA
E-mail address: sahuadr@yahoo.com