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ON THE ANALOGS OF BERNOULLI AND EULER
NUMBERS, RELATED IDENTITIES AND ZETA AND
L-FUNCTIONS

TAEKYUN KiM, SE0OG-HOON RIM, YILMAZ SIMSEK*, AND DAEYEOUL KiM

ABSTRACT. In this paper, by using g-deformed bosonic p-adic integral,
we give A-Bernoulli numbers and polynomials, we prove Witt’s type for-
mula of A-Bernoulli polynomials and Gauss multiplicative formula for
A-Bernoulli polynomials. By using derivative operator to the generating
functions of A-Bernoulli polynomials and generalized A-Bernoulli num-
bers, we give Hurwitz type A-zeta functions and Dirichlet’s type A-L-
functions; which are interpolated A-Bernoulli polynomials and general-
ized A-Bernoulli numbers, respectively. We give generating function of A-
Bernoulli numbers with order r. By using Mellin transforms to their func-
tion, we prove relations between multiply zeta function and A-Bernoulli
polynomials and ordinary Bernoulli numbers of order r and A-Bernoulli
numbers, respectively. We also study on A-Bernoulli numbers and poly-
nomials in the space of locally constant. Moreover, we define A-partial
zeta function and interpolation function.

Introduction, definitions and notations

Throughout this paper, Z, Z,, Q, and C, will be denoted by the ring of
rational integers, the ring of p-adic integers, the field of p-adic rational numbers
and the completion of the algebraic closure of Q,, respectively. Let v, be the
normalized exponential valuation of C, with |p|, = pre(P) = %, (cf. ]2, 3, 4,
5,6,7,8,9,16, 17, 20, 26)).

When one talks of g-extension, ¢ considered in many ways such as an in-
determinate, a complex number ¢ € C, as p-adic number ¢ € C,. If ¢ € C
one normally assumes that |g| < 1. If ¢ € C,, we normally assume that

lg — 1}, < p~7T so that ¢° = exp(z logq) for |z|, < 1. We use the following
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notations:

T

1—gq
1-gq

] =[z:q] = (cf. [3, 4, 5, 6, 8,9, 24, 26, 28)).

Observe that when lim,_,[2] = , for any z with |z|, < 1 in the present p-adic
1 -
case [z :a] = T 2

Let d be a fixed integer and let p be a fixed prime number. For any positive
integer IV, we set

X= l%n (z/dp"Z),

X" = U0<a<dp,(a,p)=1(a + dep);
a+dpVZ,={ze€X|z=a (moddp)},

where a € Z lies in 0 < a < dp™. We assume that « € C, with |1 —ul, > 1.
(cf. [3,4,5,6, 7,8, 24, 26]).

For ¢ € Z,, we say that g is a uniformly differentiable function at point
a € Z,, and write g € UD(Zp), the set of uniformly differentiable functions, if
the difference quotients,

Fy(z,y) = g—(y; — i(x)

have a limit | = ¢'(a) as (z,y) = (a,a). For f € UD(Z,), the q-deformed
bosonic p-adic integral was defined as

3

By Eq-(A4), we have

lim () = o) = | f@)du-(o).

g=—q
This integral, I_,(f), give the g-deformed integral expression of fermioinc.

The classical Euler numbers were defined by means of the following generating

function:
o<

tm
=Y Ep—, [t|<m (cf. [6, 7, 20, 21]).

m=0

2
et +1
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Let u be algebraic in complex number field. Then Frobenius-Euler polyno-
mials [6, 7, 20, 21] were defined by

1—u
t

(A1)

o
u r
emt = eH( @)t = Z Hm(uax);l_’y
m=0

e —Uu

where we use technical method’s notation by replacing H™(u, ) by H,,(u,z)
symbolically. In case z = 0, Hy, (u,0) = H,,(u), which is called Frobenius-Euler

number. The Frobenius-Euler polynomials of order r, denoted by Hff) (u, ),
were defined by

1——u r t o ( ) tn
v = g — (cf [7,1 ,
(et_u> e ;Hn (u0) (et 17, 10, 25, 26)

The values at © = 0 are called Frobenius-Euler numbers of order 7. When
r = 1, these numbers and polynomials are reduced to ordinary Frobenius-Euler
numbers and polynomials. In the usual notation, the n-th Bernoulli polynomial
were defined by means of the following generating function:

t e "
(et—1>e —ZBn(m)m
n=0

For z = 0, B,(0) = B, are said to be the n-th Bernoulli numbers. The
Bernoulli polynomials of order r were defined by

t " tr _ - (r) "
(a53) =Xy

n=0

and BY) (0) = BST) are called the Bernoulli numbers of order r. Let z, w1, wa,
..., Wy be complex numbers with positive real parts. When the generalized
Bernoulli numbers and polynomials were defined by means of the following
generating function:

wrwy - - - wrt’"e”t > t"
=Y B Wy We)—
(e“’lt - 1)(61”2’5 _ 1) ... (ewrt _ 1) nZ::o n (x | Wy, W2 w )n!

and BY(0 | wy,wy, ... w,) = B (wy,ws, . .., w,) (cf. [13, 15).
The Hurwitz zeta function is defined by

o0

1
((s,x) = Z ma

n=0

¢(s,1) = {{s), which is the Riemann zeta function. The multiple zeta functions
[12, 26] were defined by

©) co= % L

n +n s
0<ni<ne< -+ <np ( 1+ T)

We summarize our paper as follows:
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In section 1, by using g-deformed bosonic p-adic integral, the generating
functions of A-Bernoulli numbers and polynomials are given. From these gen-
erating functions, we derive many new interesting identities related to these
numbers and polynomials and we prove Gauss multiplicative formula for A-
Bernoulli numbers. Witt’s type formula of A-Bernoulli polynomials is given.

k
In section 2, by using derivative operator ( %) to the generating func-

tion of the A-Bernoulli numbers, we construct Hur‘;ﬁtz’ type A-zeta function,
which interpolates A-Bernoulli polynomials at negative integers.

In section 3, by using same method of section 2, we give Dirichlet type
A-L-function which interpolates generalized A-Bernoulli numbers.

In section 4, the generating functions of A-Bernoulli numbers of order r
are obtained. From these generating generating functions, we derive some
interesting relations between multiple zeta functions and A-Bernoulli numbers
of order r.

In section 5, we give some important identities related to generalized -
Bernoulli numbers of order r.

In section 6, we study on A-Bernoulli numbers and polynomials in the space
of locally constant. In this section, we also define A-partial zeta function which
interpolates A-Bernoulli numbers at negative integers.

In section 7, we give p-adic interpolation functions.

1. A-Bernoulli numbers

In this section, by using Eq-(A4), we give integral equation of bosonic p-
adic integral. By using this integral equation we define generating function of
A-Bernoulli polynomials. We give fundamental properties of the A-Bernoulli
numbers and polynomials. We also give some new identities related to A-
Bernoulli numbers and polynomials. We prove Gauss multiplicative formula for
A-Bernoulli numbers as well. Witt’s type formula of A-Bernoulli polynomials
is given.

To give the expression of bosonic p-adic integral in Eq-(4), we consider the
limit

© L) =lmIf)= /Z F(@)dus(2) (cf. [16, 17, 18, 21)),

in the sense of bosonic p-adic integral on Z, (= p-adic invariant integral on
Zp). From this p-adic invariant integral on Z,, we derive the following integral
equation:

(1) L(f) = L(f)+ f'(0) (cf. [17]),
where fi(z) = f(z + 1). Let Cpn be the space of primitive p™-th root of unity,

Con ={C| ¢ =1}
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Then, we denote
T, = lim = n.
P im C, o UC,

n—oo

For A € Z,, we take f(x) = A\*e*®, and f;(z) = etAf(z). Thus we have

) filz) ~ fz) = (e’ = 1) f(x).
By substituting (2) into (1), we get
(2a) (Ae' — D) (f) = £(0), (cf. [4, 21)).
Consequently, we have
loghA+t > "
(3) T = 2 Bt )
By using Eg-(3), we obtain
logh, ifn=0
ABN) + D" =B\ =41, ifn=1
0, if n>1,

with the usual convention of replacing B,(A\) by B™(A), (cf. [4, 17, 18, 21]).
From this result, we derive the values of some B, ()\) numbers as follows:

A—1-=Xlog A
Bo(A) = 1= B1(>\):—‘(/\_—1)2g—

We note that, if A € T}, for some n € N, then Eq-(2a) is reduced to the
following generating function:

_ log yooes (cf. (4,17, 21]).

(3a) ATtt—_l = ;}Bn(k)tn—i (cf. [4]).

If A\ =e¥/f f e Nand X € C, then Eg-(3) is reduced to (3a). Eq-(3a) is
obtained by Kim [3]. Let u € C, then by substituting 2 = 0 into Eq-(A1), we
set

1l—wu > t"
(3b) S = T;)Hn(u)ﬁ—! (cf. [4, 17, 18, 21)).

H,(u) is denoted Frobenius-Euler numbers. Relation between H,(u) and
B, (A) is given by the following theorem:

Theorem 1. Let A € Z,,. Then

(4) 5% :%H"(*_l) + ﬁﬂ"x‘{(iﬁ
BO(A) — log)\HO()\~1)'

A-1
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Proof. By using Eq-(3), we have

"_log)\-i-t log A t
ZB /\) -1 )\et—1+)\et—1

1- A1 (1og,\) (1-A"1) t

TN e —a 1) T A AI-A D)
_ logA N t" t - N

n=0 n=0

the next to the last step being a consequence of Eq-(3b). After some elementary
calculations, we have

ZB o L'_ 1OgAH(,(A 1

n=0
— ( log A 1 n —1y) B
+;(A_1HR(A )+ s Haa O )) i

tn
By comparing coefﬁaent in the above, then we obtain the desired result. 0O

Observe that, if A € Tp in Eq-(4), then we have, Bo(A) = 0 and B,(}) =
’I’lHn_l()\_l)
A-1
By Eg-(3) and Eqg-(4), we obtain the following formula:

Forn>0,A€Z,

,n>1.

108 fro(A-1), n=0
o) [ werdn@ =S4l T, .
» A—1H”()‘ )+/\_1Hn A7), n>0
and
(4b) / Nty (z) = Ba(A), 1> 0.
Z

Now, we define A-Bernoulli polynomials, we use these polynomials to give the
sums powers of consecutive. The A\-Bernoulli polynomials are defined by means
of the following generating function:

5) log>\+tm_zB )\z

By Eg~(3) and Eq-(5), we have

n

B.(ho) =" (Z) Br(N)z"*.

k=0
The Witt’s formula for B, (A;z) is given by the following theorem:
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Theorem 2. For k € N and X\ € Z,, we have

(6) B.(\z) = / (& + )" Ndpu (3).

P

Proof. By substituting f(y) = e!®*T¥)\¥ into Eq-(1), we have

t(z+y) yy _n_M
/Z N (y ZB (Ni2)— SV

P

By using Taylor expansion of ¢** in the left side of the above equation, after
some elementary calculations, we obtain the desired result. O

We now give the distribution of the A-Bernoulli polynomials.

Theorem 3. Letn > 0, and let d € ZT. Then we have

(7) Am—dnlzv <dw+“).

Proof. By using Eq-(6),

B,(x;)) =/Z ( +y)"NWdui(y)

P

dp™V —1

1\;—>00de Z;] x+y) /\

dlp—l

= lim —Z Z (a+dy + )" Aot

a=0 y=0

p—1 n
o e % () oo

y=0

— g NZA“/ (a”+y>n(v)y.

Thus, we have the desired result. O

By substituting = 0 into Eq-(7), we have the following corollary:
Corollary 1. For m,n € N, we have
n m—1
(8) mBa(\) =Y (”) B;(A™m’ Y At
— \J —
7=0 a=0
(Gauss multiplicative formula for A-Bernoulli numbers).

By Eqg-(8), we have
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Theorem 4. For m,n € N and A € Z,, we have

(9) mB,(A) — m"m]|sB,(A™) = ZV—_: (j) B;(\™ym? i o=,
k=1

j=0
Theorem 5. Let k € Z, with k > 1. Then we have
k-1

(10)  Bi(M\k) = A7*Bi(\ klZ)\" T (A log ) Yt

n=0
Proof. We set

_ i e(n-l—k)t)\n + i entAn—k — kz_l ent)\n—k
n=0 n=0
(10a) =Yt Zn /\" )i

=0 n=0

oo _
oY et

=1 n=0

Multiplying (¢ 4 log A) both side of Eq-(10a), then by using Eq-(3) and Eq-(5),
after some elementary calculations, we have
D (B k) = A BI(N) 3

(10b) =0

kl}:A" LRt T klog)\ZnAl
=0 n=0

1
By comparing coefficient ;—| in both sides of Eq-(10b). Thus we arrive at the

[\”13

Eq-(10). Thus we completé the proof of theorem. a

Observe that limy—,; Bi(A) = B;. For A — 1, then Eq-(10) reduces the
following:

k—1
Bi(k)-Bi=1) n'™".

n=0

If A € T, then Eq-(10) reduces to the following formula:

k—1
Bi(Aik) = A7*Bi(A) = AR Y D Amnlt
n=0

Remark. Garrett and Hummel [2] proved combinatorial proof of ¢-analogue of

ikSI (11;:1)2
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éqk-wkﬁ ([’“;12 + [k;lh) = [”;”1]

[n“‘l’—j]q

as follows:

where [Z]q = Hle

q
structed the following formula

, g-binomial coeflicients. In [12], Kim con-

k—

=5"¢" N

=

1=0
_ 1 " /n + 1 B, qH R~ — (1—g™tIMB 1y
n+1 = iad n+1 ’

where j3; , are the g-Bernoulli numbers which were defined by

5n
= —t qn+w [n+z]t ,q tn7 gl < 1,]t <1,
i 2 Z ol <1l

Bn,q(0) = fn,g (cf. [11, 12)).
Schlosser [22] gave for n = 1,2,3,4,5 the value of S, ;x[k]. In [27], the
authors also gave another proof of S,, ,(k) formula.

2. Hurwitz’s type A-zeta function

In this section, by using generating function of A-Bernoulli polynomials,
we construct Hurwitz’s type A-zeta function, which is interpolate A-Bernoulli
polynomials at negative integers. By Eq-(5), we get

log A+t , -
Fy(t;z) = (;\gt + = —(logA+1t) Z Arelntelt
n=0
o0 tn
=> Bn()\)m.
n=0 ’

k
By using Fr derivative operator to the above, we have

dk
Bi(xz) = WF)\(t;:L') t:07
Bu(he) = g S 2 kS 2
n=0 n==0

Thus we arrive at the following theorem:
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Theorem 6. For k > 0, we have

1 log/\ n n
~7Bi(Xz) = Z,\ n+ ) +Z,\ (n+z)k"

n=0 n=0

Consequently, we define Hurwitz type zeta function as follows:

Definition 1. Let s € C. Then we define

log A bt A"
11 _—
(11) sz 1—sz(n+x 7;}(n-i-ar)s

Note that (s, z) is analytic continuation, except for s = 1, in whole com-
plex plane. By Definition 1 and Theorem 6, we have the following:

Theorem 7. Lets=1—k, k € N. Then

Bk(/\, :I)) ]

(12) G —kz)=——

3. Generalized A\-Bernoulli numbers associated with Dirichlet type
A-L-functions

By using Eq-(0), we define

(12) Ii(fa) = L(f +Zf'

Jj=

where fu(z) = f(z +d), fy f(2)du(z) = L(f).
Let x be a Dirichlet character with conductor d € Nt, A € Z,,
By substituting f(z) = A®x(z)e!® into Eq-(12), then we have

d—1
@ gto )Met(log A+t
x Adedt — 1
(12a) i=
t
= Z Bnx(A)
n=0
By Eq-(12a), we easily see that
(12b) BrV) = [ x(@)a"Xdps ().
X

From Eqg-(12a), we define generating function of generalized Bernoulli num-
ber by

d-1 3]
x(G)Meti(log A + t) t
(12¢) Fyx(t) Z \dedt — 1 Z Ba(N) 5

N
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Observe that if A € T}, then the above formula reduces to

d— [eS)
SN ”t
FA,x(t) =

X =2 b
Jj=0 =0

(for detail see cf. [3, 16, 18, 22, 23, 24]).
From the above, we easily see that

— t
Py (t) = —(log A + 1) Z XMA™e™ = 3" By (V)
m=1
dk
By applying TE derivative operator both sides of the above equation, we

=0
arrive at the followmg theorem:

Theorem 8. Let k € ZT, A € Z, and let x be a Derichlet character with
conductor d. Then we have

bas o logh & Bix(A)
m,k—1 m E_ _ X .
(13) mZ:l x(m)A™mm T + 5 mzz:l A x(m)ym —
Definition 2 (Dirichlet type A-L function). For A, s € C, we define
— A"x(m) logA o= A"x(m)
14 L = — .
(14 =30 S - S S

Relation between Ly(s,x) and {,(s,y) is given by the following theorem :
Theorem 9. Let s € C and d € Zt. Then we have

Als,x)=d~* Zz\“ C}\d(,).

Proof. By substituting m = a+dk,a =1,2,...,d, k=0,1,...,00, into Eq-
(14), we have '

Ly(s.) = Zi Xty (a+dk)  logh 4 &, Aetdky(a + dk)
’ - 8 _ s—1
e (a + dk) s— 14~ (a + dk)
d 9 oo d\k
(AHF logA? (A%)
=d* ) (Ax(a)) 2 T |
2 DDy i D DY
By using Eq-(11) in the above we obtain the desired result. O

Theorem 10. For k € Z1, we have
1
L)\(l - kaX) = _EBIWX()\): k > 0.

Proof. By substituting s = 1 — & in Definition 2 and using Eq-(13), we easily
obtain the desired result. O
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Remark. If A € T, then from Definition 2, we have

X ym
L/\ (S7X) = Z )\;(l—grn)
m=1
In [21, 18], Kim studied on the A-Euler numbers and he gave interesting
many relations on A-Euler numbers and polynomials. A-Bernoulli numbers and
polynomials are corresponding to A-Euler numbers and polynomials (see [21]).
In [17, 18], Kim et al gave A-(h, g) zeta function and A-(h, q) L-function. These
functions interpolate A — (h, ¢)-Bernoulli numbers at negative integer. Observe
that, if we take s = 1 — k in Theorem 9, and then using Eq-(12) in Theorem 7,

we get another proof of Theorem 10.

4. A-Bernoulli numbers of order r associated with multiple zeta
function

In this section, we define generating function of A-Bernoulli numbers of order
7. By using Mellin transforms and Cauchy residue theorem, we obtain multiple
zeta function which is given in Eq-(C). We also gave relations between A-
Bernoulli polynomials of order r and multiple zeta function at negative integers.
This relation is important and very interesting. Let r € Z*. Generating
function of A-Bernoulli numbers of order r is defined by

(T) log A +¢
(15) FOw = (ALY ZB
Generating function of A-Bernoulli polynomlals of order r is defined by

r r x — r L
F\V(t,z) = F{"(t)e"* = ¥ B )(A)m.

n=0
Observe that when r = 1, Eq-(15) reduces to Eq-(3). By applying Mellin
transforms to the Eq (15) we get

/ Xe U F{D (—t)(t — log \)* " dt

1
- Z (n1+ne+-- +n,+r)

N1 ,e.,np=0

Thus, we get, by (C)
1 < —ir T S—r—
Co(s) = W/o e F{ (—t)(t — log \)* "Lt

By using the above relation, we obtain the following theorem:

Theorem 11. Letr,m € Z+. Then we have

et S (- i Bmarrj A7)
D) G(=m) = (=N m’g( j )aogA) retildr)
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Remark. If A — 1, the above theorem reduces to
Bm+7«(1; 7")

D2 (—m) = (=1)"'m!l—/————"—

(D2) Gr(=m) = (=1) (m +7)!

which is given Theorem 6 in [13].
By (D1) and (D2), we obtain relation between A-Bernoulli polynomials of
order r and ordinary Bernoulli polynomials of order r as follows:

By (r) =X i (—m —jr B 1) (log A)jM(m +7),

= (m+r+ !
where m,r € ZT.

We now give relations between BY(\) and H{(A~1) as follows:
If X € T}, then Eqg-(15) reduces to the following equation

O

t’l’
Ga T - 2 BYG )n.

n=0
Thus by the above equation, we easily see that

1= (/\et _ 1)7‘ B(T)(A)t
_Z )\z B(T>()\)+l)t

-Z ZA’ )" HBOW) + )7 )n!

n=0 [=0
Consequently we have

r .f
SN BOy + =40 T ET
1 if n=r.
=0
By Eqg-(15) we obtain
0 (r " B t o0 tn
2 BN =1 Z
n=0 =

. . e, . .
By comparing coefficient — in the both sides of the above equation, we have
n!

Fn+r+1) 1
'n+1) (A-=1)

Observe that, if we take r = 1, then the above identity reduce to Eq-(4), that
is

B\ = 2O,

Bnii(A) =
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5. A-Bernoulli numbers and polynomials associated with
multivariate p-adic invariant integral

In this section, we give generalized A-Bernoulli numbers of order r. Consider
the multivariate p-adic invariant integral on Z, to define A-Bernoulli numbers
and polynomials.

/ . / )\wlw1+~--+wwre(w1w1+-~+wrw»~)td’u1 («Tl) . dHl (l'r)
ZP ZP

r—times
(16) _ (wilog A +wst) - (w,log A + wrt)
= (Auu ew1t _ 1) - ()\w,«ewrt - 1)
= Z BS:')(A;’LUI,U)Q, ‘e ,wr)t—',
n!
n=0
where we called Bﬁf) (A w1, wa,. .., w,) A-extension of Bernoulli numbers. Sub-

stituting A = 1 into Eq-(16), A-extension of Bernoulli numbers reduce to Barnes
Bernoulli numbers as follows :

oo}

(eunt _1]_) . ..(ewrt _ 1) - ZB?'(L )(wla- .- 7wr);t—!7

n=0

where B,(f)(wl, ..., w,) are denoted Barnes Bernoulli umbers and w1, ...,w,
complex numbers with positive real parts [1, 7, 26]. Observe that when w; =
wy = -+ = w, = 1 in Eq-(16), we obtain the A-Bernoulli numbers of higher
order as follows:

log A +t\" S Lyt
(Fe=7) =z mrog

We note that BY)(A\;1,1,...,1) = BS(\).
Consider

log)\-l-t " zt _ ad (M (y. tm
(/\et—l) e ~nZ:OBn (/\,x)m.

Observe that

— " log A +¢t\" _
§ B™) () — (log Mt)z y —=
~ n ()\a -T) ! ( et — 1 ) e A

1 &, (t + logh)™
=3 2 B sn) e

m=0
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oo (r) m
1 Bm ()‘7'T) m mygm—1
== X TZ(;)“"N) t

m=0 ; =0
= ZO <)\ IX: ———————“ (log A) o
m= =0

. R A . . . .
Now, comparing coefficient — both sides of the above equation, we easily arrive
n!

at the following theorem:

Theorem 12. For n,r € N and A € Z,, we have

1 & N log)\)’
)= 5 LB T
=0

1 ifl=
where 0' = Z.fl 0
0 o 1#0.
Remark. In Theorem 12, we see that

ST
lim BO) (A 2) = By (x) ?f 1=0,
A—1 0 £ # 0.

6. A-Bernoulli numbers and polynomials in the space of locally
constant

In this section, we construct partial A-zeta functions, we need this function
in the following section. We need this function in the following section. By
Eq-(3b), Frobenius-Euler polynomials are defined by means of the following

generating function:
1 —_ Tl
(575) e = X iy

As well known, we note that the Frobenius-Euler polynomials of order r were
defined by

1-u\" Tt _ = (r) "
(et—u> e _,;OH" (u,m)m

The case = = 0, H{” (u,0) = H" (u), which are called Frobenius-Euler num-
bers of order .

If A € T}, then A-Bernoulli polynomials of order r are given by

tr =
(et —1)7 Z B!

n=0

n
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Hurwitz type A-zeta function is given by

x> A"
1 = —— AXEeT,.
(17) QoD =3 oige Aeh
Thus, from Theorem 7, we have
(17a) Gl —k,z) = —-};B(A;(L‘), kezt.

We now define A-partial zeta function as follows
/\m
(17b) Hj(s,a|F) = > =
m=a (mod F)

From (17), we have

A® a
(170) Hi(s,0lF) = 50 (5 5)
where (\r (s, %) is given by Eq-(17). By Eq-(17a) we have
Fr=1)aB,(\; 2)
(18) Hy(1-n,a|F) = - - F ezt

If A € T}, then by Eqg-(14), we have

L/\(S’X) = i /\nxs(n)a
=1

n

where s € C, x be the primitive Dirichlet character with conductor f € Zt.
By Theorem 9, Eq-(17¢) and Eqg-(18) we easily see that

F

Las,0 = Y x(@H (5. 5)

and
a0~ k) = - 2 e g
where By, (A) is defined by

F-1 e
tA*x(a)e® tm
AFeFt — 1 = ZB"’X(A)—H—!’ AeTy

a=0 a=0

and F is multiple of f.

Remark.
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7. p-adic interpolation function

In this section we give p-adic A-L function. Let w be the Teichimuller char-
o
t d let = —
acter and let (z) (@)

When F is multiple of p and f and (a,p) = 1, we define

H,(s,a|F) = —)\“ 1§:< )( )ij(/\F).

j=0
From this we note that

H, (1 —n,alF) iﬁ(@"i (n) (g)ij(AF)

I
|
|
B2
3
L
S
e
8|
3
—_
Q
N’
&
3
>
&
|

=w "(a)H\(1—n; %),

since by Theorem 3 for A € T,,, Eq-(18).

By using this formula, we can consider p-adic A-L-function for A-Bernoulli
numbers as follows:
F

Loa(s:x) = 3 x(@Hya (s, 7).
(afp=)1=1
By using the above definition, we have
F
Lial=nx) = 3 x(@H (1-n,%)
(a1
1

= —E (Bn,xw—"()‘) _pn_lxw_n(p)Bn,xw—"()‘p)) .

Thus, we define the formula

F oo 1—s
Lp (s, *(a)' " ) Bi(X)
Ve ()
for s € Z,.
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