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CHOW STABILITY CRITERION IN TERMS OF
LOG CANONICAL THRESHOLD

YONGNAM LEE

ABSTRACT. In this paper, we provide a criterion for Chow stability in
terms of log canonical threshold of the Chow form in the Grassmannian.

1. Introduction

The Geometric Invariant Theory (GIT for short) is one of the most useful
methods to construct a moduli space or a compactified moduli space of algebraic
varieties if one knows the effective criteria for stability and semi-stability.

The special linear group SL(n + 1) acts on Vg1 = Sym*(V), which is the
vector space of homogeneous polynomials of degree d in Clzg,...,z,]. The
Hilbert-Mumford numerical criterion [11] provides a simple way to decide the
stability and the semi-stability of f € Vj .41 by the position of nonzero mono-
mials of f in a n-dimensional Newton polyhedron. For a higher codimension
case, the stability is defined by the Chow form. Let X be a subvariety of
dimension r and of degree d in P". Consider the set Z(X) of all the (n—r—1)-
dimensional projective subspaces L in P” that intersects X. This is a subvariety
in the Grassmannian G(n — r,n + 1) which parameterizes all the (n —r — 1)-
dimensional projective subspaces in P”. The subvariety Z(X) is a hypersurface
of degree d in G(n —r,n +1). Let B = &3, By be the coordinate ring of
G(n —r,n+1) in the Pliiker embedding. Then Z(X) is defined by the vanish-
ing of some element Rx € B; which is unique up to a constant factor. This
element is called the Chow form of X. A variety X is called Chow semi-stable
(resp. Chow stable) if its Chow form is semi-stable (resp. stable) for the nat-
ural SL(n + 1)-action. Mumford [11] provides a way to decide Chow stability
or Chow semi-stability by giving the weighted flag in H°(X, Ox(1)). Contrary
to hypersurfaces in P", there is no simple way to decide Chow stability.

There is an expectation of the restriction of singularities by the notion of
stability. A natural question arises, to give a criterion for stability in terms
of the nature of the singularities. There are various ways to measure how
singularities of a variety are. Let Y be a nonsingular variety and D an effective
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Q-Cartier divisor of Y. The invariant of the singularities of the pair (Y, D),
called the log canonical threshold of Y along D, is an important topic to study
the classification of higher dimensional algebraic varieties. It received a lot of
attention recently.

The aim of this paper is to provide a criterion for Chow stability of X in P"
including log canonical threshold of the Chow form Z(X) in the Grassmannian
G = G(n —r,n+1). We prove the following

Theorem. Let X be a nondegenerate r-dimensional variety of degree d in P™.
Let (G,Z(X)) be a pair as above. Then we have the following criterion for
Chow stability of X : If 1ct(G, Z(X)) > 2L (resp. >) then X is Chow semi-
stable (resp. stable).

This result is a generalization of its in [7]. There are two main ingredients of
the proof. The first one is that the criterion for stability of hypersurfaces and
the determination of the log canonical threshold involve the Newton polyhedron
in the same way. On the stability side the criterion is due to Hilbert. On the
side of the log canonical threshold, the required statement is made at least in the
paper [14]. The second one is the Cayley’s trick. It tells that the Chow form in
the Grassmannian can be interpreted as the dual variety in the projective space
embedded by the Segre embedding of X x P" (cf. [3], Chapter 3). The main
advantage of the log canonical threshold condition over Chow stability is that it
is a local analytic condition on the singularities and so perhaps more tractable if
the Chow form can be computed. The proof of our theorem is not complicated,
but our main statement is not in the literature and our main contribution is the
interpretation of Chow stability via the log canonical threshold of the Chow
form. One can ask how closely the two conditions are related, i.e., to what
extent the converse of the theorem holds. In the case of plane curves they are
very closely related, and the case of hypersurfaces is rather similar. However,
for X C P of codimension greater than one which is not union of subvarieties
of degree 1, the two conditions seem to be not closely related.

We work throughout over the complex number field C.
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2. Stability criterion for hypersurfaces

Let P(V*) = P". The special linear group SL(n + 1) acts on Vyni1 =
Symd(V) which is the vector space of homogeneous polynomials of degree d in
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Clzo,. .., 2n) by
A F: =FoAfor A€ SL(n+1)and F € Vy 1.

Recall the Geometric invariant theory ([11], [12]). Let F € Vy pyq. F is

o semi-stable if 0 ¢ OSL(nt)(F),
e stable if the orbit OSL("*D(F) is closed and the stabilizer
Stab LD () is finite.

Each point F' € V;,, 41 defines a hypersurface of degree d in P™. There is a
simple way to decide the stability of ' by using the Hilbert-Mumford criterion
({11}, [12]). This approach was first devised by Hilbert (Lecture IL5, [5]) in
terms of ternary null forms, and used by Mumford and others to classify various
hypersurfaces of fixed degrees in projective spaces. We illustrate the case n = 2.
The technique for determining stability is essentially same for any n.

Represent F' as below by a triangle of coefficients, T. We can coordinate this
triangle by 3 coordinates i,¢y,i, (the exponents of @, y and z respectively)
with ¢, +1,+i, = d. The condition that a line L with equation ai, +bi,+ci, =
0, (a,b,¢) # (0,0, 0), should pass through the center is just a+b+c = 0; if L also
passes through a point with integral coordinates then a, b and ¢ can be chosen
integral. Let A be a one parameter subgroup of SL(3). Then A can always be

diagonalized in a suitable basis: A{(t) = t(()l 2, (O) , where a +b+c=0.
0 0 ¢
e
2Py 2"y

Fig 1. Triangle



470 YONGNAM LEE

Let F'=32 i ti—qQi.iyi,@®y"z" in these coordinates. Then

/\(t)F — Z @iy, talm‘l‘bly +ci. mlz y‘ty Ziz .
b tiy+i.=d
By the Hilbert-Mumford numerical criterion, F is stable(resp. semi-stable) if
an only if, for all coordinates and all L, F has non-zero coordinates on both
sides of L (resp. F' has non-zero coordinates on both sides of L or has non-zero
coefficients on L).

The Hilbert-Mumford numerical criterion for a hypersurface in P™ can be
checked by assigning the weights to the coordinates. In the paper [9], Kollar de-
velops in a very similar direction. Let p be a point in a hypersurface X : F = 0
in P*. By a linear coordinate change we may assume that p = (1,0,...,0).
Let f(z1,...,%,) = F(1,21,...,2,). We define I,(C", X) to be the infimum
of Zi= =T f)( for all the pos1t1ve rational weights w and for all linear coordi-

nate changes which fixes the point p. The value w(f) is the lowest weight of
monomial occurring in f. We set

I(P", X) = inf I,(C", X).

The following lemma is reinterpretation of the Hilbert-Mumford numerical cri-
terion.

Lemma 2.1. Let X be a hypersurface of degree d in P™. Then we have the
following criterion for stability of X : I(P™, X) > "—+1 (resp. >) if and only if
X is semi-stable (resp. stable).

Proof. Assume that X is unstable. Then by the Hilbert-Mumford numerical
criterion, we have coordinates zp, ..., 2z, and weights w(z;) = k; such that

(1) ko < ki < -+ <k,

(2) ko+ -+ kn =0,

(3) koto + - - - + kni, > 0 for every monomial zé" oozt in F.

Let f(z1,...,2,) = F(1,z1,...,2,). The proof is obtained if we prove the
following :

Z;:l w(z;) n+1
w(f) d

Note that w(z;) = k; — ko 2 0. For every monomial ! - -z in f,

ZT‘Lzl w(z;)i; — n+1 Z;l L w(z5)

= Z;l 1(k kO Z] n+1 Z] 1(k )
—ko(ir + -+ +in) + (krin + -+ knin) —d(ky + - + kn)

= —ko(il+"'+in—d)+(k‘1i1+"'+knin)

= koig+---+ knin, > 0.
Therefore there is a point p € X with 2;(p) = 0,5 = 1,...,n, z0(p) = 1 and
I,(C*, X) < 2L, Conversely if there is a point p € X with I,(P"*, X) < niL
then one can find coordinates 2o, ..., 2, and weights w(z;) = k; such that
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(1) ko <
(2) kot 4 ko =0, -
(3) koig + --- + knin > 0 for every monomial z° ---2i» in F. Hence X is

unstable. g

There is an expectation of the restriction of singularities by the notion of sta-
bility. A natural question arises, to give a criterion for stability in terms of the
nature of the singularities. There are various ways to measure how singularities
of a variety are. Let ¥ be a nonsingular variety and D an effective Q- Cartier
divisor of Y. The invariant of the singularities of the pair (Y, D), called the
log canonical threshold of ¥ along D, is an important topic to study the clas-
sification of higher dimensional algebraic varieties. The notion of discrepancy
is the fundamental measure of the singularities of (Y, D) (cf. [8], [10]).

Definition. Let (Y, D) be a pair as above and let p € D. The log canon-
ical threshold of (Y,D) at the point p is defined by lct,(Y,D) = sup{c €
Qy | (Y,cD) is log canonical in a neighborhood of p}. And define let(Y, D) =
inf{lct,(Y,D) |y € Y}.

The log canonical threshold of the pair can be computed by using a log
resolution of the pair or by assigning the weights to the variables. Let 7 : W —
Y be a proper birational morphism. Write

Ky =7n"Ky + ZaiEi, and 7D = ZbiEi~
Then

a; +1
let,(Y,D) < mi )
ety >—p£;z%,.>{ , }

Equality holds if )" E; is a divisor with normal crossing only. In particular,
let, (Y, D) € Q.

In general, it is hard to construct a log resolution explicitly. An efficient way
of computation of log canonical threshold is in the weighted case:

Lemma 2.2 ([8]). Let f be a holomorphic function near 0 € C* and D = (f =
) be

0). Assign positive integer weights w(zx;) to the variables x;, and let w(f
the weighted multiplicity of f. Then

leto(C™, D) < min {1, %} .

And the equality holds if the weighted homogeneous leading term
FuolzlEY ey = g c prl
15 smooth or has an isolated critical point at the origin.

The following lemma is basically due to Lemma 2.2.
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Lemma 2.3. Let f be a polynomial function near 0 € C* and D = (f = 0).
Assume that there are assigned positive integer weights w(x;) to the variables x;
satisfying that the weighted homogeneous leading term fw(xiu(“),. xﬁ(’”")) =
0 C P! is smooth or has an isolated critical point at the origin. Let w(f) be

the weighted multiplicity of f. Then

ey

?:1 w(z;)

W@, D)= =D

Example 2.4. Let f = y? — 2% and D the zero set of the polynomial f in C2.
(1) By blowing up twice, we have a log resolution = : W — C? and

Kw=7"Ke + Ey + 2E,, 7*D =7, 'D 4+ 2E; + 4E;.

Hence we have Icto(C?, D) = min{ %L, 32 251} = 3,
(2) Assign the weights w(z) = 1 and w(y) = 2, then w(f) = 4. It implies

that lcto(C?, D) = %ﬂf)—(y) =2

By Lemma 2.2, we have lct(P", D) < I(P", D). Then by Lemma 2.1, we
have the following:

Proposition 2.5. Let D be a hypersurface of degree d in P". Then we have
the following criterion: If lct(P™, D) > 2L (resp. >) then D is semi-stable
(resp. stable).

One can ask if the converse holds in Proposition 2.5. It is easy to find the
example. However, in the case of plane curves they are very closely related
(cf. [4], [7])- The case of hypersurfaces is rather similar. Roughly speaking,
the stability depends on all linear coordinate changes, but the log canonical
thresholds depends on all analytic coordinate changes. In the paper [7], Propo-
sition 2.5 for the case of plane curves is already observed to find some relations
between Hacking’s compact moduli space of plane curves [4] and the GIT com-
pactification of moduli space of plane curves.

Example 2.6. Let D = 3C, where C is a nonsingular plane conic (zz + y?).
Then (P2, D) is semi-stable but lct(P?, D) = % Let f(z,y) = f(z,y,1) = z+y?

and assign the weights w(z) = 2,w(y) = 1. Then f, = (22 +%?)? =0 in P
does not give distinct points.

Remark. The condition lct(P”, D) > "%’1 can be expressed in other way. Note
that

let(C™**, Cone(D)) = min { _n—(il-_l

,lct(]P",D)} .

Therefore the following are equivariant :

(i) let(P", D) > =+l

(ii) (C**',Cone(D)) has the worst singularity at 0; the non log terminal
locus of the pair (C**!,¢ Cone(D)) = {0} for ¢ = let(C**!, Cone(D)).
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3. Chow stability criterion

Let X be a subvariety of dimension r and of degree d in P". Consider the set
Z(X) of all (n—r —1)-dimensional projective subspaces L in P™ that intersects
X . This is a subvariety in the Grassmannian G(n—r,n+1) which parameterizes
all the (n — 7 — 1)-dimensional projective subspaces in P". The subvariety
Z(X) is a hypersurface of degree d in G(n —r,n +1). Let B = &3, B4 be
the coordinate ring of G(n —r,n + 1) in the Pliiker embedding. The subvariety
Z(X) is defined by the vanishing of some element Rx € By which is unique up
to a constant factor. This element is called the Chow form of X.

Let u = (u;) € (P™)*, and let H, be the hyperplane ) . ;u;z; = 0 where
zi, t = 0,...,n are coordinates of P*. Then

[(XNHY N nHI £ 0] o [Rx@V,..ul"™) =0].
The coordinate ring 32, B4 = subring of C]... ,Ui(j .. .] is generated by the
Pliicker coordinates P;, ... ;,,, = determinant of (r+1) % (r+1) maximal minors
of (UD), i1 < - <.

A variety X is called Chow semi-stable (resp. Chow stable) if its Chow form
is semi-stable (resp. stable) for the natural SL(n + 1)-action. Contrary to
hypersurfaces in P", there is no simple way to decide Chow stability. Propo-
sition 2.5 can be generalized to the pair of Grassmannian variety and Chow
form. Let X be a r-dimensional nondegenerate variety of degree d in P". The

Chow form Rx determines a hypersurface Z(X) in the Grassmannian variety
G=Gn—-rn+1).

Proof of Theorem. We consider the product X = X x P" as a subvariety of
P(C"™! ® (C"t1)*) via the Segre embedding. And we identify C**1 @ (CT+1)*
with the space Mat(r +1,n+ 1) of (r + 1) x (n + 1)-matrices and consider the
projection

Mat(r + ,n+1) D Str+1,n+1) B G=Gn-r,n+1)

where S(r + 1,n + 1) is the subset of Mat(r + 1,n + 1) with full rank. By this
identification, the equation of dual variety XV in P(**1("+1~1 j5 the same as
the equation Ry lifted by Rx. It implies that

XV = projectivization of the closure of p~1(Z(X)) ([3], Chapter 3).

Assume that Z(X) is not Chow semi-stable in G. By the functorial proper-
ties [12], p~*(Z(X)) is not semi-stable in S(r 4+ 1,n+ 1). It implies that XV is
not semi-stable in P(»+1(r+1)—1 By the proof of Proposition 2.5,

inf let, (P(M+HD+HD-1 gVy < (n+ 1)(7: +1) _nt 1
U deg XV d

)
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where U is the projectivization of S(r + 1,n + 1) in P(P+D+1)-1 " Apd

inf ey let, (PO =1 %V) let(S(r +1,n + 1),p~ 1 (Z(X)))
let(G, Z(X))

because S(r + 1,n + 1) is a GL(r + 1)-bundle over G. a

i

Example 3.1. Let X = p; U---Upy be d points in P™. Let Z(X) be the Chow
form of X in G(n,n + 1) = (P")*. Then X is Chow semi-stable (resp. Chow
stable) if and only if for every proper linear subspace W of P™ (cf. [2])

. d )
#{ilp; € W} < n—-l-l(dlmW +1) (resp. <).

By the following easy lemma, this is the same condition as

let((P")", 2(X)) > 2F 1

(resp. >).

Lemma 3.2. LetY be a nonsingular variety of dimension m. Let D be a union
of nonsingular divisors Dy,...,Dg of Y. Assume that the scheme theoretic
intersection Z of D1,...,Dq is a nonsingular variety of dimension k, and that
Dy, ..., D4 meet transversely at Z. Then lct(Y, D) = mi_ls_

Proof. The proof is obtained by blowing-up of Z in Y. O

Example 3.3. Let X = ¢; U---U ¥y be d lines in P?. Then X is Chow
semi-stable if and only if it satisfies the following (cf. [2]):

(1) no more than £ lines intersects at one point,

(2) no more than £ lines coincides and no more than m — 2t lines intersects
a line which is repeated ¢ times,

(3) no more than g lines are coplanar.

If 1ct(G(2,4), Z(X)) > 4 then X is Chow semi-stable. However, the conditions
(1), (2), (3) do not imply lct(G(2,4), Z(X)) > 5. If we translate the conditions
(1) and (3) into the conditions in Chow form, then we have the following:

(1) no more than % hyperplanes meets at quadric surface induced by the
intersection of G with two hyperplanes (the set of lines through at one
point in P3),

(3) no more than g hyperplanes meets at P? (the set of lines in the coplane).

These imply that lct(G(2,4), Z(X)) > 432 = 4 by Lemma 3.2. But the second

2
condition gives Ict(G(2,4), Z(X)) > 2.

Let X be a nonsingular variety of dimension r in P". Assume that the
degree of X is d and X is nondegenerate. Furthermore, we assume that the
dual variety XV of X in (P™)* is a hypersurface. If XV is not a hypersurface
then X is ruled in projective spaces (cf. [3], Chapter I). Let (G, Z(X)) be a
pair of Grassmannian variety and Chow form as before. Let X = X x P” in
P +7+7 via the Segre embedding (cf. the proof of Theorem). We have the
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inequality lct((P™)*, XV) < let((P™+7+7)* XV) by XV = XV N (P™)* from the
construction and by Lemma 3.4.

Lemma 3.4 (cf. [1], [13]). Let (Y,Z) be a pair. If H C Y is a smooth
wreducible divisor and p € H then lct, (Y, Z) > lct,(H, Z N H).

And by the Cayley’s trick in the proof of Theorem, we have the inequality
let (P74 XV < let(G, Z(X)). Therefore we have the following :

Proposition 8.5. Let X, X, G, Z(X) be varieties as above. Then we have the
following inequality : lct((P™)*, XV) < let(G, Z(X)).

Example 3.6. Let X be a rational normal curve of degree d in P?. Then the
dual variety XV in (P4)* is the classical discriminant (cf. [3], Chapter I). Let
fx) = Z?:o a;z?"*. The classical discriminant A(f) = R(f, f') vanishes when
f(z) has multiple root, i.e., f(z) has a multiple root if and only if (ay,...,aq) €
XV C (P9)~.

By the definition of A(f), it has at worst singularity when f(z) has a d-
multiple root. Let p = (1,0,...,0). The discriminant A(f) = A(ao, - .. ,aq) is
a homogeneous polynomial in the a; of degree 2d — 2. In addition, it satisfies
the quasi-homogeneity condition (cf. [3], Chapter 12):

AN, Aay, ..., Aag) = )\d(d_l)A(ao, a1, ,04).
Assign the weights w(a;) = 4. Then by Lemma 2.2,

+~--+d_1d+1
dd-1) 2d-1

et ((B4)*, XV) = lot, (B, XV) < *

Example 3.7. Let X be arational normal curve of degree d in P¢. Consider the
product X = X x P! as a subvariety of P2%*1 via the Segre embedding. Then
the dual variety (X)Y in (P2%+1)* is the classical resultant (cf. [3], Chapter 3).
Let f(z) = Y0, aiw? ™, g(z) = X%, biz?~". The classical resultant R(f,g)
vanishes when f and ¢ has a d-multiple common root.

By the definition of R(f, g) it has at worst singularity when f and ¢ have a d-
multiple common root. Let p = (1,0,...,0,1,0,...,0). The classical resultant
R(f,g) is homogeneous of degree d in the a; and in the b;. In addition, it
satisfies the following quasi-homogeneity (cf. [3], Chapter 12):

R(Nay, ..., Aag, A%, ..., A%q) = AT R(aq, . .., a4, bo, - - ., ba).
We assign the weights w(a;) = 4, w(b;) = i. Then

let(G, Z(X)) =lctp(G, Z(X))
< min {1, Htdplytd
= min {1, ‘%1} .
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Example 3.8. Let X be the image of the map P! — P92 defined by
(s,t) = (s, 897242 507343 . $Btd3, 52072 1d).

Then X is a rational curve with two cusps, and it is obtained by the projection
of a rational normal curve of degree d in P¢. By the similar computation in
Example 3.7 and by assigning the weights w(a;) = ¢, w(b;) = i, we have the
inequality lct(G, Z(X)) < 45

In Example 3.7, Chow semi-stability implies I(G,Z(X)) = 4. In Ex-
ample 3.8, we expect that I(G,Z(X)) = 431, In [6] we prove that X is
Chow semi-stable when X is the image of the map P! — P* defined by
(5,t) = (s8,5%2, 6%, s%t*,15). Therefore I(G, Z(X)) = 3 if d = 6.

Example 3.9. Let z,y,2,w be a coordinate of P2. Let d > 5 and let C be a
curve represented by the divisor class (d—1,1) in a nonsingular quadric surface
Q@ : zw — yz = 0 in P3. The image of the map P! — P2 defined by (s,t) —
(59,5471, 5t 1%} is a (d—1, 1)-curve in Q. There is a one-dimensional family
of d — 1 secant lines L in @, and there is no k (3 < k < d — 2) secant line in
Q. Since the dimension of G = G(2,4) is four and there is a one-dimensional
family of d — 1 secant lines, lct(G, Z(C)) < % ;Foranyline Le G, LNC is
finite points. Therefore the multiplicity of Z(C) is determined multy (Z(C)) =
Yomult(C N L,z;) where z; € LN C. Let m = maxyezc)multy(Z(C)).
Consider a subscheme Y = {L € Z(C)| mult,(Z(C)) = m}. By upper semi-
continuity of multz (Z(C)), Y is a finite union of subvarieties Y; of Z(C). Let
¢ = max{dim(Y;)}. Then it is easily obtained that lct(G, Z(C)) < %.

By the adjunction formula, the genus of C is zero. So C is linearly semi-
stable, and it is Chow semi-stable [11]. In this case I(G,Z(C)) = %; Let
20,21, 22, 23 be coordinates of P3. By assign the weights w(z) = 0,w(z1) =
1,w(z) = d—1,w(z3) = d, we have the inequality
l+d—-1+d+14+d-1+d 4

d? T d

And Chow semi-stability implies that I(G, Z(C)) = 3.

1(G,2(C)) <
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