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THE GENERALIZED PASCAL MATRIX VIA THE
GENERALIZED FIBONACCI MATRIX AND THE
GENERALIZED PELL MATRIX

GWANG-YEON LEE AND SeonG-Hoon CHO

ABSTRACT. In [4], the authors studied the Pascal matrix and the Stirling
matrices of the first kind and the second kind via the Fibonacci matrix. In
this paper, we consider generalizations of Pascal matrix, Fibonacci matrix
and Pell matrix. And, by using Riordan method, we have factorizations
of them. We, also, consider some combinatorial identities.

1. Introduction

The Pascal numbers, the Fibonacci number and the Pell number are very
interesting in combinatorial analysis.

For integers n,i and j, n > i,j > 1, the n x n Pascal matriz P, = [p;;] is

defined by
T N
pi; = (j—l) ifv 27,
’ 0 otherwise.

In (1], the authors gave matrices representations of the Pascal triangle. More
generally, for nonzero real variable z, the Pascal matrix was generalized in
Pz}, and Qz],, respectively which are defined in [8], and these generalized
Pascal matrices were also extended in ®[z,y], = [¢[z,y);;] (see [9]) for any two
nonzero real variables z and y where

i—=1N _i—j, g g .

elr, yli; = { (gj‘l)x T i

otherwise.

In this paper, we call ®[z,y), the GP matriz. By the definition, we have
P[x]n @[{E, l]na Q[y]n = Q[lyy]n; P, = P[l]n = Q[l]n = @[1, l]n’
Plz)! Pl~z], = [(—l)i_j (Z - 1)xi_j] :

‘7.,—

i

i
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In [8] and [9], the factorizations of P[z],, Q[z]~, and ®[z,y], are obtained,
respectively.

The Fibonacci sequence has been discussed in so many articles and books.
In [5], the authors introduced the Fibonacci matriz F, = [fi;] of order n as
follows

_ _J Fijy1 i—-j+120,
f"‘[fif]‘{o i-j+1<0,
where Fj is the kth Fibonacci number.

Now, we introduce a generalization of the Fibonacci matrix. For any two
nonzero real numbers z and y and positive integer n, the n x n GF matriz
Flz,yln = [f[z,y]s;] defined by

_ [ Fija iy ifi>
flz,yli; = { 0 otherwise.

By the definition, we have F[1,1], = F,.

In [5], the authors gave the Cholesky factorization of the Fibonacci matrix
Fr and they also discussed eigenvalues of the symmetric Fibonacci matrix. In
[4], the authors studied the Pascal matrix and the Stirling matrix of the first
kind and of the second kind via the Fibonacci matrix and some combinatorial
identities are obtained from the matrices representations of the Pascal matrix,
the Stirling matrices and the Fibonacci matrix.

The Pell sequence {a,} is defined recursively by the equation

Ont1 = 205, + Gn_1
for n > 2, where a; = 1, ag = 2. The Pell sequence is
1,2,5,12,29,70,169,408, . ...

In [2] and [3], the authors gave well-known Pell identities as follows, for
arbitrary integers ¢ and r

2 2
Gntqlntr = Onlntgtr = Qq@r(—1)", 2041 = ap, +ap g,

and for nth Pell number a,,,

" [(n=1)/2]
n—1—r
n = § 277,—1—27'.
‘ r=0 ( T )

We define n x n Pell matriz S,, = [s;;] as follows

6. = 4 Gimjtls i—j+1>0,
* 0 otherwise,

where a,, is the nth Pell number.
Now, we consider a generalization of the Pell matrix. For any two nonzero
real numbers x and y and positivie integer n, the n x n generalized Pell matriz,
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Sz, yln = [s[z,y]i;] defined by

e ety 541> 0,
S[m7y]l.7 = { 0 otherwise,

where ay, is the nth Pell number. By the definition, we have S[1,1], = S,,.

In [7], the authors introduced a group which called the Riordan group, and
they gave some applications in the group. In [6], the authors introduced Rior-
dan matrix, and they proved that each Riordan matrix R in the group can be
factorized by Pascal matrix P, Catalan matrix C and Fibonacci matrix F' as
R=PCF.

In [7], the Riordan group was defined as follows:

Let R = [ry;]i j>0 be an infinite matrix with entries in the complex numbers.
Let ¢i(t) = 3030 Tn.it™ be the generating function of the ith column of R. We
call R a Riordan matriz if ¢;(t) = g(t)[f(t)]}, where

gt) =1+ g1t + got® + gat® + -+, and f(t) =t + fot> + fot® + -

In this case, we write R = (g(t), f(t)). We denote by R the set of Riordan
matrices. Then the set R is a group under matrix multiplication, *, with the
following properties:

(R1) (g(8), £(1) * (R(t),1(t)) = (g(&)h(f(£)), (£ (t)))-
(R2) I =(1,t) is the identity element.
(R3) The inverse of R is given by R™! = (Rf}f?)_)’ f(t)) , where f(t) is the

compositional inverse of f(t), i.e., f(f(¢)) = f(f(t)) =t.

(R4) If (ag,a1,as,...)" is a column vector with generating function A(%),
then multiplying R = (g(¢), f(¢)) on the right by this column vector
yields a column vector with generating function B(t) = g(t) A(f(¢)).

We call % a Riordan group. From the definition of the Riordan matrix, we
know that the matrices in the Riordan group are infinite and lower triangular.

Here are three examples about the Riordan matrices.

The first example of element in R is the Pascal matrix, and the following
representation is well-known.

(100 0 00
110 0 00
1 ¢
P=|121 0 00 :|=(e.rs :(__>
133 1 00 (9p®: fet) = | {573
146 4 10
i |
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The next example is the Fibonacci matrix. We consider the infinite Fi-
bonacci matrix F = [F};] as follows;

(1 00 0 0 0 ]
110 0 00
F=12 110 00 = (gz@),frt).
3 21 1 00 # (©)
53 2 1 10
i ]

Since the first column of F is (1,1,2,3,5,...)7, it is obvious that gr(t) =
Yoo Fa41t™ = 7=—. The rule of formation in F is that each entry is the sum
of the elements in the upper two rows. In other words, Fri1; = F, j + Fhe1j,
j > 1. So, we have fr(t) = t because ¢;(t) = gr(t) - [fr () = —=xt’, Le,,

F = (g7(t), fr(t)) = <1—:%2_’t)

and hence F i in R.
Finally, we consider the infinite Pell matrix S = [s;;] as follows;

1 0 0 0 00
2 1.0 0 00

s=|5 2 1 0 00 = (g5(8), fs(1)).
25 9 1 00 (g5(t), f5(t))
29 12 5 2 1 0

Since the first column of S is (1,2,5,12,29,...)T, we have gs(t) = 1—;2—135 By
the rule of formation in S, it is obvious that fs(t) = . That is,

5= (os(0) 55 = ( =g=t)

and hence S is also in R.

In this paper, we consider the relationships between GP matrix and GF
matrix and generalized Pell matrix S[z,y]. Also, we give some interesting
combinatorial identities.

2. Main theorems

To begin with, we define a matrix. For any two nonzero real variables = and
Y, an infinite matrix L[z,y] = [€[x, y]i;] is defined as follows:

e ((2)-(7) - G23) v
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From the definition of L{z,y], we see that £[z,yl11 = 1, £z, y]1; = 0 for
J 22, z,yla1 = 0, £z, y]e = 1 and £[z,y]s; = 0 for j > 3. Also, we see that
lz,y)in = —x* "1yl for i > 3, and, for i,j > 2,
(2) U, yli; =z, ylic,jo + oyl oyt

From (2), we know that ¢;; satisfy the Pascal-like recurrence relation. Us-

ing the definitions of ®[z,y], Flz,y] and L[z,y], we can derive the following
theorem.

Theorem 1. Let L[z,y] be the infinite matriz as in (1). For the infinite GP
matriz ®(x,y] and the infinite GF matriz Flz,y], we have

®fz,y] = Flz,y] x Liz,y].

Proof. From the definitions of the GP matrix and GF matrix, we have the
following Riordan representations

@ tlowl= (1o ) Flewil = (1o e )

1—zyt’ 1 — ayt 1~ zyt — (xyt)

We know that if L[z, y] is in R, then we may assume Lz, y] = (92 (1), fL(2)).
From (2), we have the infinite matrix Lz, y] = [£[z, y];;] as follows:

1 0 0 0 0 0
0 1 0 0 0 0
| =2ty oz 1 0 00
Hel=| _sys "0 2yt 1 0 0
gyt —2%y3 2%y 3zy! 1 0

i |

Since the first column vector of L[z,y] is (1,0, —z%y~2, —z3y~%,..)7, it is
obvious that
1yt — (zy't)?

=1 ) 2, —2\42 (3, -3\,3 4 .
gr(t) =1+0-t+ (—a y )" + (—zy )" + [pp—"

The rule of formation in Lz, y] is that each entry is the sum of the elements
to the left and above in the row above. In other words, for j > 1,
0z, ylnt1,5 = €2, Yln i1 + e, yln joy ™"
Thus
c;(t) = te;_1 (t) + zy~tte;(t),
ie.
gL OfL@F = tgr ®fr Y " + 2y Htgr (O (D))
or fr(t) =t+ xy~'tfL(t). Solving for fr(t), we have fr(t) = T:mty——rt Thus,

1=yt~ (zy~'1)? t
Liz,y] = ( 1—zy~1t T
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Therefore,

Flz,y] * Llz,y]

_ 1 2) . 1—zy 1t — (xy )2 t
B 1—zyt — (acyt)Q’y 1—zy=1t "1 —zy~ it

1 1 — zyt — (zyt)? y2t
- (1 — ayt — (zyt)? l—zyt ’1- wy‘l(yQt))
1 y’t
- (1 —xyt’1— myt)
= ®fz,y),
the proof is completed. O

Since x and y are nonzero real variables, from Theorem 1, we have, for
1<j<n,

T I (o Ny )}

By (4), we have Fy + Fo +---+ F,, = F, 15 — 1, and this identity is the sum
of the first n terms of the Fibonacci sequence. From (4), we have, for k > j 42,

ne1) _n g (R= 8= =2 - 1) = (k= 5))
(-0)= 2 Frois G~ Ditk—)! |

Now, we consider the relationship between GP matrix and generalized Pell
matrix.

For any two nonzero real variables £ and y, we define an infinite matrix
M[z,y] = [m[xyy]ij]a 1 <4, as follows:

o ol = (7)) - (20) =

From the definition of M|z, y], we have m[z,y11 = 1,m[z,y];; = 0 for j > 2,
m[z,yla1 = zy~',m[z,yla2 = 1 and m[z,yls; = 0 for j > 3. Also, we have
mlz,yla = —22* "'y~ for i > 3, and, for i,5 > 2,

(6) mlz,yli; = m[x,y]i—l,j—l + m[%y]i—l,jwy_l-

From (6), we know that m[z,y];; satisfy the Pascal-like recurrence relation.
From the definition of ®[z,y], S[z,y] and M|[z,y], we can derive the following
theorem.

Theorem 2. Let M[z,y] be the infinitie matriz as in (5). For the infinite GP
matriz ®[z,y] and the infinite generalized Pell matriz S[z,y], we have

q’[.’l;,y] = S[x:y] * M[x,y]
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Proof. From the definition of S[z,y],

1 0 0 0 0 0 |
2y y? 0 0 0 0
| 5%y 2myB yt 0 0 0
Slz,y] = 1243 52yt 2ayb ys 0 0 )
8 0

202yt 122%y° By 2xyT oy

and we know that S[z,y] is in R. So, we have the following representation

— 1 2

We know that if M[z,y] is in R, then we may assume M|[z,y] = (gm(t),
Fum (). From (5), we have

1 0 0 0 0 0
—zy~! 1 0 0 00
| =22y 0 1 0 00
M[;L‘, y] - _21.3?/—3 __21.2:[/—2 xyfl 1 0 0
—2zty™t 4y 22y~ 2zt 1 0

Since the first column vector of M|z, y] is
(17 _'TJ_I) —21172?]—2, —295331_37 “‘2.’7)4y_4, o ‘)Ta

it is obvious that
gu(t) = 1—ay 't — 222y~ 2% — 223y 733 — 22ty ™4t — ...

= 1—(zy7't) = 2(ay~'t)* = 2(zy™"t)® — 2@y~ '0)* ~ -
1—2zy~tt — (wy=1t)?
1—xy1t

The rule of formation in M [z, y| is that each entry is the sum of the elements
to the left and above in the row above. That is, for 7 > 1

mlz,ylis = mlz, yli-1j-1 +mlz,yliog 2y
Thus ¢;(t) = te;—1(t) + 2y~ 1tc;(t), and hence
g OUfm @Y = tgn O m OV " + 2y~ tgne (O ae (D) -

Thus, we have fa(t) = ; and

_t
1—zy—

Mz, ] = 1—2zy~ 1t — (zy—'t)? 13
Y= 1—xy=1t 1—zy~it)’
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Therefore, we have

1 2zyt — )2 2t
Sl, ] + M[z,1] Tyt — (zyt)’  y )

(1—2zyt— (zyt)2 11—yt "1 —zyt
( —xyt l—xyt)
D[z

The proof is completed. a

By Theorem 1 and Theorem 2, we know that for positive integer n, F[z, y], =
®[z,y].L[z,y],' and S[z,y]n = ®[z,y],M[z,y]; . Thus we consider inverse
matrices.
Let L[z,y|, be an n x n matrix as in (1). From the definition of L[z, y],, th
inverse matrix L[z,y],;! of L[x,y]n is of the form L[z,y];! = [{[z,y]i;] with

e = [(G73) = (G2) = (23)

and hence we have, for j > 2,

U, yli; = fa,yli-1,j-1 — Fa, yli1 joy™"
For the matrix Flz,y], fr(t) = y~2t because f#(t) = y2t. So, we have

1
————=1—zy 't — (zy~'t)%.
97 (fx(®))
Thus,
Fla,y] ™' = (1 —ay ™"t — (zy™')%,y~%).
Also, for the matrix L[z,y], we see that f(¢) = 1+z_§r1? and
1 1—zy?! (—sz_lt)

7 B P

gr(fL(t)) 1 -y~ (l+m§1‘ t) _ (wy 1 (1+m;_ t))
1+ oy~ 1t

1+zy=1t— (zy=1t)2"

Hence, we have the following lemma.

Lemma 3. Let Flz,y] be the infinite GF matriz and let L[z, y] be the matriz
as in (1). Then we have

Fla,yI™' = (Q—azy 't - (ay )%y 2)

- 14+ zy='t t
L[$, y] ! = —14 —1 27 -1 N
IT+zy=1t — (xy=14)2 1+ zy—1t
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From the definition of S[z,y] and M|z, y], we consider the inverse matrices.
For the matrix S[z,y], fs(t) = y=?¢ because fs(t) = y*t. Thus we have
1

o onu Y — (e 1)
9s(fs(t)) L2yt ey )

and hence, we have

S[m7y]‘l = (]- - 2$y—1t - (Jiy_lt)Q,y_Zt).

For the matrix M(z,y], we have fi (t) = y3t=r; and
1 1oy ()
s = >
gum (fa(t)) 1— 2y (I+z—ty—1—t> _ (xy_1 (ﬁﬁ))
1+zy!
1—2(zy~1t)?"

Hence, we have the following lemma.

Lemma 4. Let S[x,y] be the infinite generalized Pell matriz and let M|z,y]
be the matriz as in (5). Then we have

Slz,yl™ = (1-2zy~ 't — (zy ')’y %)
_ 1+ zy ! t
M b= .
7. 4] (1 —2(zy~11)2" 1+ my—1t>

From Theorem 1, Theorem 2, Lemma 3 and Lemma, 4, we have the following
corollaries.

Corollary 5. For the infinite GP matriz ®[z,y],
Bz, y] ! Llz,y)™" * Fla,y]
Mz, y]™" = Sz, y] ™"

B < 1 t )
14+oy 1 y2+zyt)
Proof. From Theorem 1 and Theorem 4, we know that
Blz,y] ™" = Llz,y] ™"+ Fla,y] ™' = Mz, y] "+ Slz,y) 7"
Thus, we have

Blz,y]™t = Liz,y)] ™t * Flz,y) ™"

_ 142y 't t
 \ D4yt — (zy )2 14+ 2y 1t
#(1—ay 't — (zy~')%y )

1 t
L+ay= 1ty +ayt)
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Corollary 6. Let u, = zy + zy® + - -- + zy?" L. For positive integer n > 1,

we have
2n

. n 2n _
() 2oyl = (25 255 ) 8l 91 = (3, ot ) -
(ii) f[«'ﬂay]n = (szl 1_wy2k-—1ti(zy2k—1t)27y2nt)l
f[x,y]"" — (HZ:I(]' _ .Z‘y_2k+1t _ (my—2k+1)2)7y—2nt) .
(iil) Sfz,y" = (szl I_mezk—ltl_(wy2k—lt)27y2nt>’
Sle, yl™" = ([Tier (1 = 22y =241t — (y=2F418)%),y7200).
Proof. (i) From (3), we have

[z, y]*> = ( ! 't ) .

1—(zy+ay’)t’ 1 — (zy + zy®)t
By induction on n for n > 1, we can get the ®[z,y]" as follows:
lr,y]" = Bz,y]" "« 2z,

1 y2(n—1yg 1 ¥t
(1 —Up_1t’ 1— un_lt) * (1 —azyt’ 1 —xyt)
_ 1 y2"t

Since ®[z,y]" = (1_—2371"’_2—::5), we have f(t) = m, and 'g‘(‘fl(T)) =

y2n
VP funt”
Thus,

Bz, y™" = ( y t ) .

Y2 4 unt’ Y2 4 unt
The proofs of (ii) and (iii) are similar to (i).
Therefore, the proof is completed. g

Corollary 7. Let S[z,y] be the infinite generalized Pell matriz. Then we have

-1
_ _ Ty -t
f[w,y]~$’[1',y]* (1 1_xy__1t_(wy__]_t)2)t)

Proof. From Theorem 1, Theorem 2 and Lemma 3, we have

Flz,9]
= Sfz,y]* M{z,y] * L{z,y] !
1—2zy~ 1t — (zy—'t)? 1+ 2y 'T T
= S[Ili,y]* — _(1 ) : - _ 2 —-17
1 —zy~1t 1+2y=1T — (zy17)* 1+ ay
-1
Tyt
= S 1- ¢
[m’y]*( 1—zy=1t — (xy=14)?’ >
where T = —t— O

1—xy—it-
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Corollary 8. For ®[z,y], Flz,y], S[z,y], and positive integer n > 1, the
following results hold:

1) @[-z,y]" = @[z, —y]", ®[z,y]" = ®[-x, —y]™.
(11) f[—;zj,y]" = f[‘ra —y]nv f[m)y]" = .7:[—93, _y]n'
(iii) S[—=z,y]* = Slz, —y)", S[z,y]" = S[—z, —y]".

Example 1. If £ = y = 1, then, from Theorem 1, we have

1t 1
_p - t —F= d
®[1,1]=P <1_t,1_t>,7[1,1] F (1_t_t2,t>,an

1—t—12 ¢
=L = (———= " .
=1 ( - ,H)

1 2 1—t—t ¢t
1—t—1¢2’ 1—t '1—t¢

1 1—t—t* ¢\ [ 1 t
1—-t—t2 1-t '1—-t) \1-t'1-t

= P

Then, we have

FxL

Il

1t

From (i) of Corollary 6, we have

1 t
Pr={—vu, —1.
@ (1—nt’1—nt>

Let P" = [pgl)] for n > 1. From (7) and the definition of the Pascal matrix,
we have the interesting result as follows:

W (i=1)
ng):” J(j_l):" Ipij.
From the Corollary 5, the nth column of P~! has

1 t\"_
1+t \1+4+¢t) — (L+)n+!
as its generating function. And, we have, for n > 1,
1 t
P"=— —.
(1 +nt’ 1+ nt)
If z =1 and y = —1, then, from (3), we have

1 t
®(1,-1)=(—,—— ) =P %
(-] <1+t’1+t>

More generally, for positive integer n, we have,

®[1, 1" = P,
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Also, from (ii) of Corollary 6 and by induction on k for k > 1, we have

(i) ) ) (i)

Example 2. If £ =y =1, then, from Theorem 4, we have

1 t 1

Mmuz(l—m—ﬂ ¢ )

1—-t "1-t¢
1 1-2t—12 ¢t
P“(1-2p—ﬁ¢>*( 1—¢ ’l—t)’

and from (iii) of Corollary 6 and by induction on k for £ > 1, we have

v 1 1 _ 1
5 _(u—2p4%hﬂo*(1—%—ﬁJ - u-m-#vﬁ '

We consider the 7 x 7 matrices P; = S7 - My. That is,

So, we have

10 0 0 0 0 0]
110 0 0 060
121 0 0 00
133 1 000
14 6 4 1 00
1 51 10 5 1 0

|1 6 15 20 15 6 1 |

1 0 0 0 0 0 0 1 1 0 0 0 0 0O ]
2 1 0 0 000 -1 1 0 0 00O
5 2 1 0 00 0 -2 0 1 0 000

= 12 5 2 1 00 0 -2 -2 1 1 000

29 12 5 2 1 0 0 -2 -4 -1 2 100
70 29 12 5 2 1 0 -2 -6 -5 1 310

[ 169 70 29 12 5 2 1| | -2 -8 -11 —4 4 4 1 |

From this multiplication, we can get many identities. For example,
6—-1 3
P (55) =)
= a4 -14+ag-14ay-(—1)+a;-{-5).

More generally, we have

i~1
pij = (J _ 1> = 8iMny; + S + -

= aiMmy; +a;—1Ma; + -+ aem;—y,; + aym;;,
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where a,, is the nth Pell number. For example, for j = 2,

— 1
(;_J =i—1=a;-1 —20;—3—4a; 4~ - —2(i — 4)as — 2(i — 3)ay,

where a,, is the nth Pell number.

In particular, from the above identity, we have, for j =1, 1 = a, — an_; —
2(an~2 + -+ a1)7 i'e"

Up = Qn1+2(Cn- +--+a1)+ 1.

Also, we have, for positive integer n and Pell sequence {a,},

1 1
a; +ags+ -+ An = §(an+2 — Qn+41 — 1) = §(an+1 + an — ].)
The above identity is the sum of the first n terms of the Pell sequence.

From Corollary 7, we have the following identity
Fn = an — (an—lFl + an-2F2 + -4 aan—~1)7
where a,, is the nth Pell number.
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