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Further Applications of Johnson’s Sy-normal
Distribution to Various Regression Models

Pilsun Choi! Insik Min®

Abstract

This study discusses Johnson’s Sy-normal distribution capturing a wide range
of non-normality in various regression models. We provide the likelihood inference
using Johnson’s Sy-normal distribution, and propose a likelihood ratio (LR) test
for normality. We also apply the Sy-normal distribution to the binary and censored
regression models. Monte Carlo simulations are used to show that the LR test using
the Sy-normal distribution can be served as a model specification test for normal
error distribution, and that the Sy-normal maximum likelihood (ML) estimators
tend to yield more reliable marginal effect estimates in the binary and censored
model when the error distributions are non-normal.
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1. Introduction

The normality assumption for error distribution has played a dominant role in both
theoretical and applied economics. It is, however, obvious that many real data encoun-
tered in economics and finance show significant deviations from the normal distribution.
In the field of time series analysis, it is now well-documented that the conditional normal
distribution is unable to provide an appropriate description of the statistical properties
of asset returns in terms of skewness and excess kurtosis. The studies motivated by
inadequateness of the normal assumption proposed a variety of parametric distributions
to capture the asymmetry and fat tails of asset returns (Bollerslev, 1987; Theodossiou,
1998, 2000; Rockinger and Jondeau, 2001 to name a few).

In the field of limited dependent variable models as well, several methods of maximum
likelihood (ML) estimates with more flexible distributions have been introduced. Among
others, McDonald and Yexiao (1996) and McDonald (1996) proposed several skewed
and leptokurtic parametric distributions, and compared the performance of some flexible
parametric and semi-parametric methods in estimating binary and censored regression
models. The main benefit of using a more flexible parametric distribution is that it
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can provide likelihood inferences and thus consistent estimators, and can account for
skewness and excess kurtosis.

In this paper, we discuss Johnson’s (1949) Sy-normal distribution capturing a wide
range of non-normality in various regression models. The Sy -normal distribution defined
as an inverse hyperbolic transformation of a normal random variable is one of the most
flexible distribution functions in accommodating asymmetry and excess kurtosis of error
distribution. In addition, this distribution shares some convenient properties of the
normal distribution such as the easy derivations of quantiles, cumulative probabilities
and joint density function.

In spite of the flexibility and simplicity, the S;;-normal distribution had not been in-
troduced in the field of econometrics until Choi and Nam (2007) and Choi (2002) applied
the density to modeling multivariate generalized autoregressive conditional heteroskedas-
ticity (GARCH) models. Recently the Sy-normal distribution has also been applied to
the estimation of switching regression models by Choi and Min (2007). In this paper, we
attempt further applications of the Sy-normal distribution to various regression mod-
els including limited dependent variable models. We provide likelihood inferences using
Johnson’s Syy-normal distribution, and propose a likelihood ratio (LR) test for normality.
We also apply the Sy-normal distribution to the binary and censored regression models.
Monte Carlo simulations are used to show that the LR test using the Sy-normal dis-
tribution can be served as a model specification test for normal error distribution, and
that the Syy-normal ML estimators tend to yield more reliable marginal effect estimates
in the binary and censored model when the error distributions are non-normal.

The remainder of this paper is organized as follows. In Section 2, we provide the like-
lihood inference using Johnson’s Sy-normal distribution. Section 3 proposes a likelihood
ratio test for normality and ML estimates for the binary and censored regression models
based on the Sy-normal distribution. Section 4 concludes the paper.

2. Johnson’s Sy-normal distribution

Johnson (1949) introduced a flexible parametric distribution by simply transforming
a normal random variable. The distribution of a random variable Y is considered to be
Sy-normal, if

sinh™'(Y) = A + 62,

where Z is a standard normal random variable, A € ®,0 € Rt and -0 < Y < .
sinh ™ (Y) denotes the inverse hyperbolic sine of Y. The Sy-normal distribution has the
density

NN 1 _ (sinh™'(¥) - 2’
FY;0,6) = —_—m exp ': 507 } . (2.1)

The mean and variance of Y are given as, respectively, m = w!/%sinh()) and s*> =
(1/2)(w ~1){wcosh(2X) +1}, where w = exp(6?) (See Appendix for detailed derivations).
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Figure 2.1: Flexibility of the Sy-normal distribution

Figure 2.1 shows the flexibility of the Sy-normal distribution. In the skewness and
kurtosis plane, one can depict the area that each distribution may cover as its skewness
and kurtosis coeflicients. The normal distribution can cover only one point in this plane
(skewness = 0 and kurtosis = 3) and the log-normal distribution covers the upward-
sloping line in the figure. The Student’s ¢ distribution is symmetric and may have a
kurtosis coefficient that lies between three and infinity. The Sy-normal distribution
can cover all kurtosis larger than that covered by a log-normal distribution. It implies
that for any thicker tail distribution that is a log-normal distribution, there exists an

appropriate Sy-normal distribution that covers a wide range of negative skewness with
excess kurtosis.

3. Further Applications

3.1. Likelihood inferences for S;;-normal distribution model

Suppose that data consist of {y;, z;} and an ¢.i.d. sample drawn from the distribution
of (y,z) with the joint density function. Consider a regression model with Sp-normal
(SyN) error term,

yi = z:B+u;, u; ~ SyN(0,0%; ), 0).

Therefore, the conditional distribution of (y;|z;) ~ SyN(z;3,0% A, 0) and the corre-
sponding conditional density function is given by
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f(yi;xiaa) = gfy {S(yz - .’L‘zﬁ) +m}

sjo

\/27ra2 [{g(yi —z:B) + m}2 + 1]

(sinh‘1 {g(y —z:8) + m} - ,\)2
207 ’

X exp

where 6 = (3,0, A, 8) is the parameter set and fy(-) is the density function provided in
(2.1). The log-likelihood function is constructed as follows

InL = Zlnf(yi;xi,é)

=1
_ {sinh ™} (U;) — A}?
262 ’

= 1
= Z [lns —~Ino - 3 In(27) — Inf — %ln(Ui2 +1)
i=1
where U; = s/o(y; — 2:8) +m. The score function is Y., Ss(yi; z:,8), where S5 =
dln f(yi; %;,6)/86 = (S5,85, S, Sp). Thus § = (3,6, ,0) is the ML estimates satisfying
S Ss(yi;xi,6) = 0. Considering the space restriction, we provide the score function
only with respect to # in this section.

g, - Oln f(ys;2i,0)  U; U, _ {sinh ™' (U;) — A} 1 aU;
p= a8 T UZ+198 62 V1+U2 98’

where 8U,; /88 = —(s/a)z;.”

3.2. Model specification test for normality

In many economic applications, the distribution of one variable conditional on some
other variables is of particular interest. Using Student’s ¢ distribution, Bollerslev (1987)
suggested an LR test against null hypothesis of conditional normal errors in the GARCH
model. Semiparametric and nonparametric tests of conditional distributions are also
suggested by Zheng (2000), Andrews (1997), Klaauw and Konig (2003) and Fan et al.
(2006).

In this subsection we propose a parametric test of error distributions using the SU-
normal distribution. In fact, Bollerslev’s LR test can not be a consistent one in case
where the alternative error distribution is sharply skewed. The LR test statistic in this
study is based on the SU-normal distribution that can capture the skewness and excess
kurtosis.

3) The other score functions are available upon request.
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The data generating process (DGP) for null model is a linear regression model with
normal homoskedastic errors:

DGPy : y; = By + Prz; + uiy

where {z;}; is a random sample from U(—2,2) and the error term {u;} follows i.7.d.
N(0,02). Moreover, z; and u; are independent of each other. The true parameters are
6 ={Bo, 61,0} = {1,1,1}. The null and alternative hypotheses are, respectively

Hy : f(y|z,6) = ¢[(y — Bo — iz)/o] /o and

H, : f(y|z,0) belongs to a non-normal distribution.

The three DGPs for H1 are considered as follows:®

DGPY 1 y; = B + Brzs + wi,  u; ~ £(5),
DGP} 1y = Bo + frzi +wi,  u; ~SyN(0,1;2=1,0=0.3),
DGP§ :y; = Bo + frxs + us,  u; ~ skewed — t(0,1;m = 5,1 =0.2),%

The proposed LR test statistic is written as
LR = _2(10g LNormal - lOg LSuN)v (31)

where log Lnorma; and log Ls,, v are the log-likelihood function values estimated under
the assumption of normal and Sy-normal error distributions, respectively. Because the
Sy-normal converges to the normal distribution as the shape parameter 8 — 0, the
distribution of LR test statistic is expected to deviate from a x2(1) distribution; thus, the
test statistic is more concentrated towards the origin than in case of a x?(1) distribution
(see Bollerslev, 1987). For empirical critical values, we employ the parametric bootstrap
procedure that mimics the sample distribution of the test statistic in (3.1).9

Monte Carlo evidence reported in Table 3.1 indicates that the simulated rejection
probabilities for the LR test based on (3.1) closely replicates the nominal sizes of 10%,
5% and 1% under the null hypothesis. Moreover, the simulated power of the test increases
as the sample size increases when the data generating process moves away from the null
model (DGP,). With regard to the alternative DGP{ with a symmetric and leptokurtic
t distribution, we observe that our test becomes powerful and thus consistent as the
sample size is n = 400. For the alternative models with an asymmetric and leptokurtic
distribution, namely, DGP§ and DGP{, our test is still consistent in showing that the
simulated rejection rates are asymptotically one.

4) Although we provide the simulation results only for one special set of parameter values in the paper,
we obtained basically similar results even when we used different set of parameter values for each
alternative DGP.

5) We adopt Hansen (1994) type skewed-t distribution.

6) The number of simulations is 1,000 and the numbers of bootstrapping are 1,000 for size estimation
and 500 for power estimation.
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Table 3.1: Simulated sizes and powers of the normality test

n = 100 n = 200 n = 300
1% 5% 10% 1% 5% 10% 1% 5% 10%
DGP, (size) 0.9 5.5 1.7 13 55 11.3 0.9 5.3 10.1

DGP} (power) 48.3 67.1 74.9 74.5 86.7 91.0 96.5 98.3 99.1
DGPg (power) 52.5 73.0 814 86.1 94.5 97.8 99.4 99.9 100
DGPg (power) 55.0 74.1 79.7 88.7 93.3 97.0 99.3 99.8 99.8

3.3. Binary regression model
The binary dependent variable model with the Sy;-normal error distribution is given
by
y; = zif+ei, &~ SyN(0,0%),90),

{1 >0,
=0, if g <o,

where y; is observed instead of the latent variable y}. It is noted that z; = {sinh™'(¢; +
m) — A}/0 or &; = {sinh(\ + 0z;) — m} to make the zero-mean distribution, where z; is
a standard normal random variable. Further, we can derive the following:
Prle; < —z;8] = Pr[{sinh(\ + 02;) — m;} < —x;0]
= Pr[z; < {sinh™'(m — z,8) — \}/6] = ®(a}),

where ®(-) and is the standard normal cdf. As a result, the likelihood function of the
model is constructed as

logL = Z log{®(a})} + Z log{1 — ®(a})}.
yi=0 yi=1
The marginal effect of the probability that y; = 1 is

OPrly; = 1|z;, 3, A, 6] _0[1— ®(a*)] _ _Oa” . DB 1
Ozk - Oz, Oz ola’) = 0 /1+ (m—z;6)2 #

We design the following binary dependent model for the simulation:
yi = 6o+ Pz +e, i=1,...,n,

where true parameters are {fp, 51} = {-5, 1}. The exogenous variable z; is uniformly
distributed on [0,10]. We choose two sample sizes (n = 500 and n = 1000). The error
terms are drawn from three underlying distributions: a standard normal distribution, a
t-distribution with degrees of freedom parameter 4 as a symmetric and thick tail distri-
bution, a standardized Si-normal distribution with A = 1 and § = 1 as the asymmetric
and leptokurtic distributions.”

7) We obtained basically similar results when we used different set of parameter values.
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Table 3.2: Monte Carlo simulation results for binary model
(1) &4~ N(O) 1)

True value Probit Sy-normal ML
n = 500 n = 1000 n = 500 n = 1000
ME(z = 3) 0.054 0.054(0.020)  0.052(0.013) _ 0.053(0.020) 0.051(0.012)
ME(z = 5) 0.399 0.401(0.043)  0.402(0.026)  0.407(0.047) 0.407(0.027)
ME(x=1) 0.054 0.053(0.018)  0.053(0.012)  0.050(0.020) 0.050(0.012)
log L —89.52 ~178.48 ~89.29 ~176.22
(2) & ~ t(4)
Probit Sy-normal ML
True value n = 500 n = 1000 n = 500 n = 1000
ME(z = 3) 0.034 0.056(0.031)  0.058(0.029)  0.042(0.021) 0.041(0.016)
ME(z = 5) 0.530 0.398(0.141)  0.392(0.142)  0.485(0.129) 0.497(0.099)
ME(z =T) 0.034 0.055(0.031)  0.056(0.027)  0.039(0.020) 0.038(0.015)
log L -88.37 ~179.07 —86.29 ~172.95
(3) & ~ SyN(0, ;1 = 1,6 = 1))
Probit Sy-normal ML
True value n = 500 n = 1000 n = 500 n = 1000
ME(z = 3) 0.030 0.055(0.038)  0.056(0.034) _ 0.029(0.010) 0.030(0.006)
ME(z = 5) 0.521 0.410(0.130)  0.410(0.120)  0.515(0.122) 0.5140(0.086)
ME(z =T7) 0.002 0.043(0.046)  0.045(0.046)  0.002(0.005) 0.002(0.004)
log L —82.34 —166.78 —71.41 —141.48

Note: M E(x = a) indicates the marginal effect at x = a. The value in parenthesis is the root mean
squared error.

Table 3.2 provides the results for simulation with the number of simulation 500. For
normally distributed errors, the Probit estimators slightly dominate the Sy-normal MLE.
As the sample size is n = 1000, the marginal effects and root mean squared error (RMSE)
from the Sy-normal ML model are similar to those from the Probit model.

For a symmetric and leptokurtic distribution, however, we observe that the Sy;-normal
ML model obviously dominates the Probit model in terms of the precision and RMSE
of estimates at the given points. Particularly, at the tail distribution, the reliability of
marginal effects from the Sy-normal model outperforms the Probit model. When the
true distribution is the Sy-normal distribution, we expect that the non-normality with
asymmetry and excess kurtosis leads to imprecise marginal effect estimates and a serious
loss of efficiency in the Probit model. Meanwhile, the Sy;-normal ML model seems to
sufficiently accommodate the deviations from the normality.

3.4. Censored regression model

The censored model with the Sy-normal error distribution is given by

Y =z;8+¢;, &~ SyN(0,0%,0),
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v, ifyr >0,
0, ifyy <0
z; is a standard normal random variable and by applying the change of variable, z; =
[sinh ™" {s(y; — 2:8)/0 +m} — A]/6. The log-likelihood function is given by

logL = ) log(Prly; = 0]) + Y log(f(yily: > 0)Prfy; > 0])

where we observe y; = { . Note that &; = o{sinh(\ + 8z;) — m}/s, where

y:i=0 y; >0
= > log(Prfy; <0+ > log(f(us)).
y:i=0 yi=1

Under the Sy-normal error assumption,

Prly; <0] = Prle; < —z;8] = Pr[o{sinh(\ + 0z;) — m}/s < ;0]

= Pr(z; < {sinh™'(m — sz;8/0) — \}/6] = ®(a}),
where a} = {sinh™!(m — sz,8/0) — A} /6. Hence, we have

log L= log(®(a})) + Y _ log(Jicp(z)).
y:i=0 ;>0
Whatever the distribution with mean zero and variance o2 is used, the marginal effect
for E(y|z) is derived as

P _ uprly” > 0) = Aul1 - F(wi6),

where F(-) is the cdf of €;. Thus the marginal effect in the censored model with the
Sy-normal error is derived as

OE(y|z . ' .
L) _ epety > 0] = Bult - o8],
Tk
where b} = {sinh™'(m + sz;8/0) — A}/6.
The following simulation experiment is designed as

y;—k=ﬂo+x1iﬁ1+6i, i=1,...,n,

where we observe y; = y; when y > 0 and y; = 0, otherwise. Most of simulation designs
are same as in the binary model except for setting ¢ = 2.8) The simulation results are
provided in Table 3.3. For normal error distribution, both Tobit and Sy-normal models
yield the coefficient and marginal effect estimation results. When t(4) distribution is
assumed, we do not find any difference in the coefficient estimation, but the estimated
marginal effects from the Tobit model are much deviated from the true value. Meanwhile,
Sy-normal ML model produces the accurate and reliable estimated under the symmetric
and leptokurtic distribution. As predicted, when the error distribution is a skewed and
thick tail distribution, the Tobit model shows a seriously bad estimation results. On the
contrary, Sy-normal ML model tends to yield consistent estimates and marginal effects
as the sample size is larger.

8) We obtained basically similar results when we used different set of parameter values.
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Table 3.3: Monte Carlo simulation results for binary model
(1) gs ~ N(0,2)

True value Tobit Sy-normal ML
n = 500 n = 1000 n = 500 n = 1000
Bo —5.000  —5.013(0.337) —4.990(0.0.237)  4.998(0.348)  —4.982(0.239)
B 1.000 1.000(0.046) 0.998(0.033)  0.999(0.048) 0.998(0.033)
ME(z = 3) 0.158 0.157(0.017) 0.158(0.012)  0.156(0.0.017) 0.157(0.012)
ME(z = 5) 0.500 0.497(0.024) 0.499(0.016)  0.495(0.025) 0.498(0.017)
ME(z =7) 0.841 0.840(0.042) 0.840(0.020)  0.842(0.044) 0.842(0.029)
log L —616.25 —1233.00 —615.95 1232.71
(2) &1 ~ t(4)
Tobit Sy-normal ML
True value n = 500 n = 1000 n = 500 n = 1000
3o —5.000  —5.048(0.325)  —5.031(0.265)  —5.005(0.270)  —4.991(0.198)
X 1.000 1.005(0.045) 1.003(0.036) 0.999(0.037) 0.998(0.027)
ME(z = 3) 0.058 0.073(0.025) 0.075(0.022) 0.059(0.012) 0.059(0.008)
ME(z = 5) 0.500 0.495(0.022) 0.497(0.016) 0.496(0.028) 0.500(0.021)
ME(z =7) 0.941 0.927(0.044) 0.924(0.034) 0.941(0.036) 0.940(0.027)
log L —496.91 —1000.84 —477.63 —959.34
(3) ei ~ SyN(0,2;A = 1,0 = 1))
Tobit Sp-normal ML
True value n = 500 n = 1000 n = 500 n = 1000
o —5.000  —6.069(1.392)  —6.117(1.286)  —4.988(0.309)  —5.014(0.235)
5 1.000 1.115(0.165) 1.121(0.148) 0.998(0.041) 1.001(0.030)
ME(z = 3) 0.093 0.151(0.065) 0.151(0.061) 0.092(0.011) 0.092(0.008)
ME(z = 5) 0.338 0.470(0.134) 0.470(0.133) 0.337(0.023)  0.0.336(0.017)
ME(z = 7) 0.977 0.977(0.142) 0.849(0.134) 0.975(0.039) 0.978(0.028)
log L —644.14 1292.47 —515.40 ~1032.82

Note: M E(x = a) indicates the marginal effect at ¢ = a. The value in parenthesis is the root mean
squared error.

4. Conclusions

In this paper, we attempt further applications of the Sy-normal distribution to var-
lous regression models including limited dependent variable models. The Sy-normal
distribution is one of the most flexible distributions in capturing skewness and excess
kurtosis. It can represent all kurtosis values bigger than that of a lognormal distribution
for all coefficients of skewness. The Sy-normal distribution also has simplicity due to the
fact that it is derived from the method of transformation to normality. In this paper,
we show that the Sy-normal distribution can be an alternative to various distributions
in capturing asymmetry and excess kurtosis. The simulation results suggest that the LR
test statistic based on the Sy-normal distribution can be served as a model specification
test. It is also shown that the advantages of assuming error distributions with a flexi-
ble parametric form are considerable for estimating the marginal effects in binary and
censored regression models.
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Appendix: Derivation of Moments of Sy-normal Distribution

The Sy-normal random variable y is defined as y = sinh(z) where z ~ N (), 6?). Note
that the moment generating function of a normal random variable is

292
E(e™) = exp (m)\ + m2 ) .
We use the following relationships of hyperbolic functions;
. 1 _
sinh(z) = 5(6“” —e ),
sinh?(z) = %[cosh(2x) —1] and
cosh = %(ew +e7%).

The first moment of y is

. 1 €T —x 1
B(y) = B(sinh(2)) = 5 [B(e") — B(e™)] = 1[/2 —
= %662/2(6)‘ —e ) = egZ/QSinh()\) = w'/%sinh()),

where w = exp(6?). The second moment of y is
' 1
E(y*) = E(sinh*(z)) = 5 B {E(e**) + E(e™*")} - 1]

_ B (62,\+2e2 n 6—2,\+292) _ 1]

= N

1 42 1
[—2—629 (2 +e ) - 1] =3 [w?cosh(2X) — 1] .

Hence the variance of y is given by
var(y) = E(y*) — [E(y)]* = = [wcosh(2)) — 1] — wsinh?(\)

%[w%osh()\) -1] - %w[cosh(2)\) -1 = —;—(w — 1)[wcosh(2X) + 1].

B
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