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Aspects of Dependence in Lomax Distribution

N. Asadian', M. Amini?, A. Bozorgnia®

Abstract

In this paper we study some positive dependence concepts, introduced by Caperaa
and Genest (1990) and Shaked (1977b), for bivariate lomax distribution. In par-
ticular, we obtain some measures of association for this distribution and derive the
tail-dependence coefficients by using copula function. We also compare Spearman’s
ps with Kendall’s T for bivariate lomax distribution.

Keywords: Bivariate lomax distribution; positive quadrant dependence; dependent by

total positivity of order two; decreasing failure rate; copula; tail dependence of
coeflicient.

1. Introduction

In the univariate setup the lomax distribution is being widely used for stochastic mod-
eling of decreasing failure rate life components. In reliability, the component lifetimes are
often assumed to be independently distributed random variables. Even if the components
are structurally independent, the use of the system in varying environments may make
the lifetimes dependent (Shaked, 1977a; Winterbottom, 1984). A bivariate extension of
the lomax distribution given in Lindley and Singpurwalla {1986) fails to cover the case
of independence. The multivariate lomax distribution is discussed by Nayak (1987) and
sums, product, ratios and their moments for the bivariate lomax distribution(BLD) are
studied by Nadarjah (2005). According to Lindley and Singpurwalla (1986), we consider
a two component system where for a given environment 7 the component lifetimes X
and Y are independently exponentially distributed with failure rates nA; and nAs re-
spectively where A\; and ), being the failure rate under the test environment. Let H{n)
be the distribution function of 7 then the BLD is obtained by assuming to be a gamma
distribution with density function h(n) = b%/T'(a)n®~te"®, n > 0, a,b > 0 and density of
BLD is

0102a(a +1)
(1 + (91£E + 02’5/)“"‘2 ’

f(zy) = / A AgeTETA B dy = (11)
0
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where 6, = X\;/b>0, i=1,2and z,y > 0.
From (1.1), one can obtained joint and marginal survival functions as follows.

F(z,y) = (L+ 6012+ 62y)™%, Fi(z) = (1+6:2)™* and F(y) = (1+6)" % (1.2)

This paper is organized as follows. In section 2, we study some concepts of dependence
for BLD and obtain some new results. The section 3 is related to failure rate of conditional
distributions and some useful properties based on these failure rates. In section 4, we
derive copula function and tail dependence coefficient for BLD and we determine some
association measures in section 5.

Let (X,Y) be a two dimensional random variable with density function f(z,y), dis-
tribution function F(z,y) and reliability function F(z,y) = P(X > z,Y > y). Then the
following quantities are defined:

1. Total positivity of order two(TP;) (Karlin, 1968) f(z,y) is TPs if f(x,y) > 0 and
forallz <a',y <y,

f@nfy) > flz,y) (@ y).

2. Let the conditional distribution of Y given X (Fy,(y)) is continuous and strictly
increasing in y. Then F;I;(y) exist and we can construct a cumulative distribu-
tion function Fy o (u) : [0,1] — [0,1] as Fy 2 (u) = Fy |y oFgllz(u) (Caperaa and
Genest, 1990).

3. (i) The random vector (X,Y) or its distribution function is said to be right corner
set increasing(RCSI) if P(X > z,Y > y|X > 2/,Y > %) is increasing in z’
and ¢’ for all z and y (Harris, 1970).

(ii) The random variable X is said to be stochastically increasing in Y (SI(X|Y))
if P(X > «|Y =y) is increasing in y for all z.

(iii) The random variable X is said to be right tail increasing in Y (RTI(X[Y))
if P(X > z|Y > y) is non-decreasing in y for all  and X is called left tail
decreasing in Y (LTD(X|Y)) if P(X < z|Y < y) is non-increasing in y for all
x (Barlow and Proschan, 1975, p.142-146).

4. The random variables X and Y are said to be positively quadrant dependent(PQD)
ifforallz andy, P(X > z,Y > y) > P(X > z)P(Y > y). Note that the likelihood
ratio dependence(LRD) is a TP,-property for the density f(x,y). Moreover, LRD
= PQD (Lehmann, 1966).

5. The bivariate failure rate (Basu, 1971). The failure rate of a random vector (X,Y)
having joint density f(z,y) and distribution function F(z,y) is given by

_ f&y)
F(z,y)

r(z,y)



Aspects of Dependence in Lomax Distribution 195

Johnson and Kotz (1975) defined the hazard gradient as a vector (r(z|Y > y), r(y|X
> z)), where r(z|Y > y) is the hazard rate of the conditional distribution of X
given Y > y. Similarly r(y|X > z) is the hazard rate of the conditional distribution
of Y given X > z.

. Arnold and Zahedi (1988) defined the vector (m(z|Y > y),m(y|X > z)) where
m(y|X > z) = BE(Y —y|X > z,Y > y) is the mean residual life function of Y with
the additional information that X > z. In general m(y|X € A) = E(Y —y|X €
AY > y). m(z|Y € A) is defined similarly.

. Dependent by total positivity of order two.
Shaked (1977b) proposes some nested definitions of dependence. Let

G, y) = LmLmLmLm/j/wf(xy)dmdrl

dTm_1dyedy: - dyn—1,

for m,n > 0 and for m = 0, n = 0 define ¥ o(z,y) = f(z,y). For m,n > 0 the
random vector (X,Y) or its distribution function F or its Survival function F is
said to be dependent by total positivity of order two with degree (m,n) (denoted
by DTP (m,n)) if ¢, n(z,y) is TPz in z and y (z,y € R).

Remark 1.1 Let (X,Y) be a random vector with joint distribution function F

and joint density function f and suppose that (X, Y') is absolutely continuous, based

on definition and proposition 3.3 of Shaked (1977b), the random vector (X,Y) is:
(i) DTP(0,0) or equivalently LRD, when the joint density f(z,y) is TPs.

(ii) DTP(0,1), when —8/8zF (z,y) is TPy, similarly DTP(1,0) when —/8yF(z,y)
is TP,.

(iii) DTP(1,1), when F(x,y) is TP,.
(iv) DTP(0,2) (DTP(2,0)), when the mean residual life function,

m(y|X = z)=E[Y -yl X=2,Y > y] (m(z|]Y = y) =E[X ~z|X > 2,V =1)),

increasing in y(z) for all z(y).

(v) DTP(1,2) (DTP(2,1)), when m(y|X > x) (m(z|Y > y)) is increasing in z (y)
for all y (z).

. Bivariate decreasing failure rate. Brindley and Thompson (1972) proved that if X,
Y are non-negative random variables with joint distribution function F(z,y) then
F(z,y) is decreasing failure rate(DFR) if F(x + A,y + A)/F(z,y) is increasing in
z and y for each A > 0 and all z,y > 0, such that F(z,y) > 0.
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9. Let X,Y be non-negative random variables, denote the conditional hazard function
of X givenY € A by

R(z|Y € A) = /x r(tlY € A)dt = —~log P(X > z|Y € A). (1.3)

2. Some Concepts of Dependence

In this section, We proved some concepts of dependence for BLD. In fact, we stud-
ied dependence structure of BLD according to Caperaa and Genest (1990) and nested
definitions of dependence in Shaked (1977b).

Proposition 2.1 (Drouet Mari and Kotz, 2001) The random vector (X,Y) is LRD if
and only if

Fm/m(t) - szm(u) < t—u

Fz’z(v) - Fz’x(u) -

foralz <z and0<u<t<uv<l.

»
v—u

Remark 2.1 1t is clear that, the above inequality holds if and only if F,.,(u) convez on
[0,1], for all z < 2’. By using the convexity of Fj.,(u), we have the following proposition.

Proposition 2.2 Let (X,Y’) be a random vector with BLD function. Then (X,Y) is
LRD and consequently is PQD.

Proof: We can show that

1+ 6z

—(a+1)
Fy|z(y)=l—(1+%x)) , ola) ==

The function Fy|,(y) is continuous and strictly increasing in y so that
Fy(w) = o(x) [(1 — )T w T — 1] , 0<u<l1

and
Frp(w)=1-[1+H@)] ) o0<u<l,

where H(u) = o(z)/o(z')[(1 — u)~1/(@+1) _ 1]. Monotonicity of Fy(u) is equivalent to
monotonicity of H on [0,1]. We have

pon o o(x) - Y u o(@)
B = Gt~ = G (0 55 >0

Hence Fyr,(u) is increasing in u. Moreover o(z') —o(x) is positive for all z < 2’ therefore

d_2 () = a+2 - _o(z') —o(z)
a2t = Ty s T Hw)

F.,.(u) > 0.

This implies that F,/.(u) is convex on [0,1], hence Remark 2.1 complete the proof. [J
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In the following proposition, we show that the all concepts of dependence in Remark 1.1,
is valid for BLD function.

Proposition 2.3 Let (X,Y) be a random vector with BLD function. Then (X,Y) is
DTP( n,m ) for (n,m) = (0,0),(0,1),(1,0),(1,1),(0,2),(2,0),(1,2),(2,1).

Proof:

(i) It is clear that z1y; + Zoys > T1y2 + Toy1, for all 1 < xo, y1 < yo. This implies
that f(z,y) in (1.1) is TPy, then by Remark 1.1 (i) (X,Y") is DTP(0,0).

(ii) We can show that, the functions —9/0zF(z,y) = a1 (1 + 61z + f2y)~ (@D and
—8/0yF (z,y) = aba(1 + 01z + Ooy)~(@+1) are TPy, therefore (X,Y) is DTP(0,1)
and DTP(1,0) respectively.

(ili) It is easy to see that, F(x,y) is TP,, this means that (X,Y) is DTP(1,1).
(iv) For DTP(2,0) and DTP(0,2), we note that

m(z|Y € A) = E[X —z|X >z,Y € 4]
_/OOP(X>x+t,Y6A)
~Jo PX>zYeA
_/°°P(X>x+t|Y6A)

o PX>zlY eA
/°° F(tlY € A)
. F(z|]Y € A)

dt

dt

So we have m(z|Y = y) = [ F(t|ly)dt/F(z|y) = 1/a{o(y)+z} that is increasing in
x for all y. Therefore (X,Y) is DTP(2,0). Similarly, it can shown that m(y|X = z)
is increasing in y for all z and this yields DTP(0,2).

(v) Forall z,y > 0, we get m(y|X > z) = E[Y —y|X > z,Y > y| = fyoo F(z,t)/F(z,y)
dt = (14 61z + 62y)/{02(a — 1)}, for @ > 1. It is obvious that m(y|X > z)
is increasing in @ for all y. Then (X,Y) is DTP(1,2). We prove that (X,Y) is
DTP(2,1} analogously. O

Remark 2.2 The distribution function F(x,y) is right corner set increasing (RCSI) if
and only if F(z,y) is TP, (Nelsen, 1999, Theorem 5.2.15). Therefore by Proposition 2.3
(iii), the BLD is RCSI if and only if it is DTP(1,1).

3. Failure Rates of the Conditional Distributions

In this section we study failure rate of the conditional distributions and some useful
properties for BLD function.

Lemma 3.1 Let (X,Y) be a random vector with BLD function. Then
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(i) For all y > 0, the random variable X|Y > y distributed as the pareto random
variable with parameters o(y) = (1 + 62y)/6; and a. And Y|X > z distributed as
the pareto random variable with parameters o(z) = (1 + 6,y)/62 and a.

(i) For all y > 0, the random variable X|Y = y distributed as the pareto random
variable with parameters o(y) and a + 1. And for all z > 0, Y|X = z distributed
as the pareto random variable with parameters o(z) and a + 1.

Proof: Lemma 3.1 is proved by the definition of conditional distribution. O

Note that, if T distributed as the pareto random variable with parameters o and £,
then r(t) = 8/(a +t). Using this notion, Lemma 3.1 and Propositions 3.4 and 3.9 in
Shaked (1977b) we have the following Proposition.

Proposition 3.1 Let (X,Y) be a random vector with BLD function. Then,

(i) For all z (y), r(z|Y = y) (r(y|X = z)) is decreasing in y (z) if and only if (X,Y)
is DTP(1,0) (DTP(0,1)).

(i) For all z (y), r(z]Y > y) (r(y|X > z)) is decreasing in y (z) if and only if (X,Y)
is DTP(1,1).

(iii) The random variable X is SI in Y if and only if R(z|Y = y) is decreasing in y for
all z.

(iv) The random variable X is right tail increasing in Y if and only if R(z|Y > y) is
decreasing in y for all z.

Proof:

(i) Since XY =y is a Pareto random variable with parameter o(y) and a + 1, hence
r(@lY =y) = (a+1)/{z +o(y)} = {(a + 1)6:}/(1 + 012 + Ooy) is decreasing in y
for all z > 0. By Proposition 3.4 in Shaked (1977b), it is equivalent to DTP(1,0).

(ii) Using Lemma 3.1 (i), 7(z|Y > y) = (a#2)/(1 + 61z + 62y) is decreasing in y for all
x > 0. This is equivalent to DTP(1,1).

(iii) By using (1.3), R(z]Y =y) = —log P(X > z|Y = y) = log(1 + (61)/(1 + O5y))**!
is decreasing in y for all > 0, so by Proposition 3.9 in Shaked (1977b) it is
equivalent to SI(X|Y).

(iv) It is easy to see that, R(z|Y > y) = —log P(X > z|Y > y) = log(1 + (012)/(1 +
62y))®. Therefore Proposition 3.9 in Shaked (1977b) complete the proof. O

Remark 3.1 Stochastically increasing(SI(X|Y)) implies right tail increasing(RTI(X|Y")
and left tail decreasing(LTD(X|Y’)) (Barlow and Proschan, 1975).
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In the univariete case the lomax distribution is decreasing failure rate(DFR). We will
show this for bivariate case.

Proposition 3.2 The bivatiate lomax distribution is decreasing failure rate.

Proof: By the definition of bivariate-DFR, the proof follows from this fact that F(a: +
Ay + A)/F(z,y) = {1+ (8; + 02)A/(1 + 612 + 621)}* is increasing coordinate-wise,
for each A > 0 and all z,y > 0. This complete the proof. O

Remark 3.2 The DFR property is preserved under the scale change, that is for all
¢>0,¢c X and ¢ Y are DFR if and only if X, Y are DFR.

4. Tail Dependence

In this section we obtain the tail dependence of coefficients of BLD via the concept
of copula. A function C: [0,1]? — [0,1] is called a bivariate copula if it is restriction

to [0,1]2 of a bivariate distribution function whose marginals are given by the uniform
distribution on {0,1].
Let (X,Y) be a random vector with distribution function F(z,%) with the marginals

Fi(z) and F3(y), by Sklar’s Theorem (Nelsen, 1999, p.41), there exists a function C:
[0,1]% — [0, 1] such that for all z, y € R we have

F(xvy) = C(F](I),Fg(y)) .
If F is continuous then C is unique and it can be constructed as follows:

C(u,v) = F (F{ (), F5 ' (v)), for all u,v € [0,1],

or equivalently
Cluyv) = F(FT (w), By (v), (41)

where C(u,v) =u+v—-1+C(1—u,1— v). The function C is a copula and we refer to
C as the survival copula of X and Y.

Proposition 4.1 Let (X,Y) be a random vector with BLD function. Then,
C(u,v) = [(1—u)—%+(1—v)—%—1]_ tutv—1. (4.2)
Proof: From (1.2), we can drive F; ' (u) = (=% —1)/6, and F; }(v) = (v='/% —1)/6,.

Using (1.2) and (4.1) we get Clu,v) = F((u™"* —1)/0, (v™Y* —1)/0,) = (u~V +
v~/ _ 1)~ and hence,

This complete the proof. O
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Let (X,Y) be a random vector with joint distribution function F and marginals F
and Fy. The quantity Ay, = lim P(Fi(X) > ¢t|Fa(Y) > t) is called the upper tail
t—1—
dependence coefficient(UTDC) provided the limit exists. We say that (X,Y’) has upper
tail dependent if A\, > 0 and upper tail independent if A\, = 0. Similarly, we defined
the lower tail dependence coefficient(LTDC) by \; = h%lJr P(F(X) <t|Fp(Y) <t}. The
t—

upper tail dependence coefficient (or lower tail dependence coefficient) can also defined
via the notion of copula. If C is the copula of (X,Y), then

1- ’
Ay = lim 1-2u+Clu,u) and )\ = lim M (4.3)
t—1- 1—u t—0+ U

Proposition 4.2 Let (X,Y) be a random vector with BLD function. Then (X,Y) has
upper tail dependent and lower tail independent.

Proof: By using (4.3) we have

Ay = lim [2(1%‘)_%_1] = lim [2—(1—u)%]“a=2—a>0,

u—1- l-u u—1-

therefore (X,Y’) has upper tail dependent. After some calculation we obtain

—a—1
1 1
A=2-2lim (1-u)"a! [2(1—u)_a —1] =0,

u—0t+
hence (X,Y) has lower tail independent. O

Definition 4.1 (Frahm, 2006) Let (Xi,Xa,...,X,) be a random vector with joint
distribution function F(x1,zs,...,2,) and marginal distribution functions Fi,..., F,.
Moreover, Finin = min{F1(X;),..., F2(X,)} and Fuax = max {Fi(X1), ..., Fo( X))
The lower extermal dependence coefficient(LEDC) of (X1, Xy, ..., X,,) is defined as ¢; =
tl_i,%lJr P (Fiax < t|Fuin € t), whereas the upper extermal dependence coefficient(UEDC)

of (X1,X2,...,X,) is defined as ¢, = lim P (Fpin > t|Fmax > t), provided the corre-
t—1—
sponding limits exist.
Remark 4.1 By Proposition 1 in Frahm (2006), we can derive £; and ¢, via the quan-
tities A; and A, as follows,
Al Au
=5 and ¢, = 5
Therefore if (X,Y) is distributed as BLD, then Proposition 4.2 implies that &, = o and
&, = 1/(2**! 4 1). This means that (X,Y) has UED but not LED.

€l

5. Some Association Measures

In this section, we determine Clayton-Oakes association measure (denoted 6(z,y)),
Kendall’'s 7 and Spearman’s p, association measures for bivariate lomax distribution.
Moreover, we compare ps with 7.
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5.1. Clayton-QOakes association measure.
Clayton(1978) and Oakes (1989) defined the following association measure
F(f«‘y y)D12F(z,y)
DIF(:E7 y)D2F(1"7 y) ’
where D12F(z,y) = 0%/(020y)F(x,y), D\F(z,y) = 8/0zF(z,y) and DyF(z,y) =
d/0yF (z,y). The parameter 6(z,y) measures the degree of association between X and

Y, independence being implied by 8(z,y) = 1, positive dependence by 6(z,y) > 1 and
negative dependence by #(x,y) < 1 (Gupta, 2003).

e(xv ',U) =

Remark 5.1 Gupta (2003) proved, 6 = r(z|Y = y)/r(z|Y > y). If (X,Y) is a random
vector with BLD, then we obtain 6(z,y) = (a + 1)/a > 1. This implies that (X,Y) is
RCSI, consequently (X,Y) is PQD.

5.2. Kendall’s 7 and Spearman’s p; association measures.

Let (X,Y) be a continuous random vector with copula C. Then Kendall’s 7 and
Spearman’s p, are formulized via the copula function C as follows (Nelsen, 1999)

T =1—4I, here I—// 9C(u,v) 9C(w, v)dudv and
0 1]2 au a'U
ps = 12I' — 3, where I' = ) C(u,v)dudv.
[0.1)?
Theorem 5.1 Let (X,Y’) be a random vector with BLD function. Then
. 1
(l) T= 2 4 17

. 120> (k+a
(ii) ps—-kzzo2a+k( k >B(3a,k+1)—3,

where B(a, 8) = fol z*71(1 — z)P~1dz is the Beta function.
Proof:

(i) Using (4.2), we have

Iz//[01 OC(u,v) aog;,v)dudv
:1—/ / (1—v)-%—1{(1—u)—%+(1—u)—%~1}_“_1dudv
// R (R R RN (RO ' dudv

//(1—u —3-1 1—u)‘r1{(1—u)—%+(1—v)—%—1}_2G_2dudv

1-1, — I, + Is.
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It is easy to see that I; = I, = 1/2. With the substitution (1 —«) = t7° and
(1 —v) = s7° the integral I3 can be calculated as follows

1

Is = /01 /01(1 —w)T (1) e ] {(1 —u) w4+ (1—-v)"s — 1“2“‘2}dudv

o0 o0 s — 1 —2a-2
= / / at—2e—2 (1 + ) dudv
1 J1 t
a

2(2a+1)

Those prove that 7 =1—41 =1/(2a + 1).

(ii) It is clear to show that

1,1 —a
r =/ C(u,v)dudvz/ / {(l—u)"% +(1—v)"a —1} dudv.
[0,1]? 0 Jo

Taking 1 —u =172 and 1 — v = s7%, we derive

o0 lo o}
I' = / / a’t % 17 Nt 4 5 — 1) dsdt.
1 1

Using the transformations, t + s — 1 = w and s — r = 1, we obtain

o oo —a—1
I = a2/ / P4 1) ety (1oL dwdr
ARG (1-%)

1 k+a
2
E 1).
a k=02a+k( 4 )B(3a,k+ )

Therefore

5.3. The Comparison of p; with 7.

Considering the relation of p;, it is not possible to compare analytically p, and 7.
However, with the help of some dependence concepts we are able to give a lower bound
and a plausible suggestion for upper bound of ratio ps/7. In particular, if X and Y are
continuous random variables and X is left tail decreasing and right tail increasing in Y,
then 0 < 7 < p,. Also if X and Y are PQD then ps < 37 (see, Fredricks and Nelsen,
2007). Therefore by Proposition 3.1 and Remark 3.1, for the bivariate lomax distribution
ps/T > 1. We compute p; for some a, then compare it with 7. Tables 5.1 and 5.2 show
values of p, = ps(a) = Y 70 ,(12e2)/(2a + k) (kza)B(Ba, k+1)-3, r=1(a) =1/(2a+1)
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Table 5.1: Values of ps(a), 7(a) and ps(a)/7(a) for some a € (0,1)

a

.001 .011 .021 .031 041 e 991
ps(a) 99999350 99924680 .9973865  .9945713 9909380 - -- .4810656
T(a) 99800399  .97847358 .9596929 .94161959 .92421442 .33534541
psla)/T(a) 1.001993 1.021230  1.039277  1.056235 1.072195 ... 1.434538

Table 5.2: Values of ps(a), 7(a) and ps(a)/7{a) for some a € (1,100)

a
1.1 2.1 3.1 4.1 5.1 99.1
ps(a) 45076680 .28394200 .20656080 .16217260 .13343770 .00753000
T(a) .31250000 .19230700 .13888800 .10869500 .08928570 ---  .00502008
ps(a)/r(a) 1.44245 1.4764986 1.4872382 1.4919880 1.49450305 --- 1.4999810
-
g 2.

Figure 5.1: p,(a)/7(a) for some values of a € (0,1) (left) and a € (1,100) (right)

and ps(a)/7(a) for some values of a. Tables 5.1, 5.2 and graphs of Figure 5.1 seem to
give empirical evidence that p,/7 < 3/2. Tables 5.1 and 5.2 provide for 0 < a < 1 and
1 < a < 100 respectively. Ascending a, gives an empirical evidence that the ratio of p,

to T approach to 3/2.
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