홍길주(洪吉周)의 대수학(代數學)

Hong Gil Ju(洪吉周)'s Algebra

  • 발행 : 2008.11.30

초록

이 논문은 홍길주(洪吉周)$(1786{\sim}1841)$의 기하신설(幾何新說)에 들어 있는 대수학 분야를 조사하여 홍길주(洪吉周)의 대수학을 구조적으로 분석한다. 쌍추억산(雙推臆算)은 수리정온(數理精蘊)의 첩차호징(疊借互徵)으로 이에 대한 문제를 추가한 것이고, 개방몽구(開方蒙求)에서 완전제곱수부터 완전다섯제곱수를 급수로 나타내는 등식(等式)을 얻어내었다. 잡쇄수초에서, 정수환(整數環) Z의 상환(商環) Z/(9)를 도입하여 합동방정식을 해결하고, 마지막으로 황금비(黃金比)의 성질을 기하적으로 규명하였다.

In this paper, we investigate the part dealing with algebra in Hong Gil Ju's GiHaSinSul to analyze his algebraic structure. The book consists of three parts. In the first part SangChuEokSan, he just renames Die jie hu zheng(疊借互徵) in Shu li jing yun to SangChuEokSan and adds a few examples. In the second part GaeBangMongGu, he obtains the following identities: $$n^2=n(n-1)+n=2S_{n-1}^1+S_n^0;\;n^3=n(n-1)(n+1)+n=6S_{n-1}^2+S_n^0$$; $$n^4=(n-1)n^2(n+1)+n(n-1)+n=12T_{n-1}^2+2S_{n-1}^1+S_n^0$$; $$n^5=2\sum_{k=1}^{n-1}5S_k^1(1+S_k^1)+S_n^0$$ where $S_n^0=n,\;S_n^{m+1}={\sum}_{k=1}^nS_k^m,\;T_n^1={\sum}_{k=1}^nk^2,\;and\;T_n^2={\sum}_{k=1}^nT_k^1$, and then applies these identities to find the nth roots $(2{\leq}n{\leq}5)$. Finally in JabSwoeSuCho, he introduces the quotient ring Z/(9) of the ring Z of integers to solve a system of congruence equations and also establishes a geometric procedure to obtain golden sections from a given one.

키워드