Doxorubicin 매개 세포독성에 대한 Nrf2 경로의 역할

Sensitization to Doxorubicin by Inhibition of the Nrf2-Antioxidant System

  • 발행 : 2008.02.29

초록

The use of doxorubicin, which is one of the most effective anticancer agents, is often limited by occurrence of acquired resistance in tumor cells. GSH has been shown to be involved in the development of this drug resistance. Transcription factor Nrf2 governs the expression of GSH synthesizing glutamylcysteine ligase (GCL), as well as multiple phase 2 detoxifying enzymes. Here we show that Nrf2 is one of factors determining doxorubicin sensitivity. Nrf2-deficient fibroblasts (murine embryonic fibroblasts, MEF) were more susceptible to doxorubicin mediated cell death than wild-type cells. Doxorubicin treatment elevated levels of Nrf2-regulated genes including NAD(P)H: quinone oxidoreductase (Nqo1) and GCL in wild-type fibroblasts, while no induction was observed in Nrf2-deficient cells. Doxorubicin resistance in human ovarian SK-OV cells was reversed by treatment with L-buthionine-sulfoxamine (BSO), which is depleting intracellular GSH. Finally, transfection of SK-OV cells with Nrf2 siRNA resulted in exacerbated cytotoxicity following doxorubicin treatment compared to scrambled RNA control. These results indicate that the Nrf2 pathway, which plays a protective role in normal cells, can be a potential target to control cancer cell resistance to anticancer agents.

키워드

참고문헌

  1. Brozovic, A. and Osmak, M. : Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatinresistance. Cancer Lett. 251, 1 (2007)
  2. Siddik, Z. H. : Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 22, 7265 (2003)
  3. Kartalou, M. and Essigmann, J. M. : Mechanisms of resistance to cisplatin. Mutat Res. 478, 23 (2001) https://doi.org/10.1016/S0027-5107(01)00142-7
  4. Fojo, T. and Bates, S. : Strategies for reversing drug resistance. Oncogene. 22, 7512 (2003)
  5. Kobayashi, M. and Yamamoto, M. : Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal. 7, 385 (2005)
  6. Kensler, T. W., Wakabayashi, N. and Biswal, S. : Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89 (2007)
  7. Wakabayashi, N., Itoh, K., Wakabayashi, J., Motohashi, H., Noda, S., Takahashi, S., Imakado, S., Kotsuji, T., Otsuka, F., Roop, D. R., Harada, T., Engel, J. D. and Yamamoto, M. : Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 35, 238 (2003)
  8. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D. and Yamamoto, M. : Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13, 76 (1999)
  9. Kwak, M. K., Wakabayashi, N. and Kensler, T. W. : Chemoprevention through the Keap1-Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat. Res. 555, 133 (2004) https://doi.org/10.1016/j.mrfmmm.2004.07.012
  10. Cho, H. Y., Reddy, S. P. and Kleeberger, S. R. : Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 8, 76 (2006)
  11. Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V. and Biswal, S. : Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006)
  12. Padmanabhan, B., Tong, K. I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M. I., Kobayashi, A., Yokoyama, S. and Yamamoto, M. : Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell. 21, 689 (2006)
  13. Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M. and Kensler, T. W. : Antioxidants Enhance Mammalian Proteasome Expression through the Keap1-Nrf2 Signaling Pathway. Mol. Cell Biol. 23, 8786 (2003) https://doi.org/10.1128/MCB.23.1.1-13.2003
  14. Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. : Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936 (1987)
  15. Lewandowicz, G. M., Britt, P., Elgie, A. W., Williamson, C. J., Coley, H. M., Hall, A. G. and Sargent, J. M. : Cellular glutathione content, in vitro chemoresponse, and the effect of BSO modulation in samples derived from patients with advanced ovarian cancer. Gynecol Oncol. 85, 298 (2002)
  16. Cho, J. M., Manandhar, S., Lee, H. R., Park, H. M. and Kwak, M. K. : Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: Implication to cancer cell resistance. Cancer Lett. 260, 96 (2008)
  17. Stacy, D. R., Ely, K., Massion, P. P., Yarbrough, W. G., Hallahan, D. E., Sekhar, K. R. and Freeman, M. L. : Increased expression of nuclear factor E2 p45-related factor 2 (NRF2) in head and neck squamous cell carcinomas. Head Neck. 28, 813 (2006)
  18. Kwak, M. K., Kensler, T. W. and Casero, R. A. Jr. : Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem. Biophys. Res. Commun. 305, 662 (2003)
  19. Rappa, G., Gamcsik, M. P., Mitina, R. L., Baum, C., Fodstad, O. and Lorico, A. : Retroviral transfer of MRP1 and gammaglutamyl cysteine synthetase modulates cell sensitivity to Lbuthionine-S,R-sulphoximine (BSO): new rationale for the use of BSO in cancer therapy. Eur. J. Cancer. 39, 120 (2003)
  20. Iida, T., Kijima, H., Urata, Y., Goto, S., Ihara, Y., Oka, M., Kohno, S., Scanlon, K. J. and Kondo, T. : Hammerhead ribozyme against gamma-glutamylcysteine synthetase sensitizes human colonic cancer cells to cisplatin by down-regulating both the glutathione synthesis and the expression of multidrug resistance proteins. Cancer. Gene Ther. 8, 803 (2001)