Reactivity of Prototype Foamy Virus Integrase to the Mutants of the Highly Conserved Terminal Sequence of U5 LTR

원조포미바이러스 U5 LTR 말단의 보존적인 잔기의 돌연변이에 대한 인테그라제의 반응성

  • Hyun, U-Sok (Department of Biotechnology, Chung-Ang University) ;
  • Lee, Dong-Hyun (Department of Biotechnology, Chung-Ang University) ;
  • Ko, Hyun-Tak (Department of Biotechnology, Chung-Ang University) ;
  • Shin, Cha-Gyun (Department of Biotechnology, Chung-Ang University)
  • 현우석 (중앙대학교 산업과학대학 생명공학과) ;
  • 이동현 (중앙대학교 산업과학대학 생명공학과) ;
  • 고현탁 (중앙대학교 산업과학대학 생명공학과) ;
  • 신차균 (중앙대학교 산업과학대학 생명공학과)
  • Published : 2008.04.30

Abstract

The long terminal repeat (LTR) of retroviral DNA genome plays an important role in the integration process by providing substrate recognition site for viral integrase (IN). The dinucleotide CA near the 3'-end of the LTR termini is completely conserved among retoviruses. In order to study specificity of interaction between prototype foamy virus (PFV) IN and its U5 LTR DNA, the effect of mutagenesis of the CA sequence was investigated by studying reactivity of PFV IN to the mutant LTR substrates. Replacement of only the C or the A allowed 60 to 100% of the reactivity of the wild type LTR substrate. In addition, replacement of the C and the A showed 50 to 80% of the reactivity of the wild type LTR substrate, indicating that PFV IN has less specificity on the conserved CA sequence when it is compared to the other retroviral INs. Therefore it is suggested that PFV IN is less dependent on the conserved sequence of LTR termini for its enzymatic reaction.

Keywords

References

  1. Engelman, A., Mizuuchi, K. and Craigie, R. : HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67, 1211 (1991) https://doi.org/10.1016/0092-8674(91)90297-C
  2. Murray, S. M. and Linial, M. L. : Foamy virus infection in primates. J. Med. Primatol. 35, 225 (2006) https://doi.org/10.1111/j.1600-0684.2006.00171.x
  3. Malmquist, W. A., van der Maaten, M. J. and Boothe, A. D. : Isolation, immunodiffusion, immunofluorescence, and electromicroscopy of a syncytial virus of lymphosarcomatous and apparently normal cattle. Cancer Res. 29, 188 (1969)
  4. Rethwilm, A., Baunach, G., Netzer, K. O., Maurer, B., Borisch, B. and Meulen, V. : Infectious DNA of the human spumaretrovirus. Nucleic Acids Res. 18, 733 (1990) https://doi.org/10.1093/nar/18.4.733
  5. Delelis, O., Lehmann-Che, J. and Saib, A. : Foamy viruses - a world apart. Cur. Opin. Microbiol. 7, 400 (2004) https://doi.org/10.1016/j.mib.2004.06.009
  6. Yu, S. F., Sullivan, M. D. and Linial, M. L. : Evidence that the human foamy virus genome is DNA. J. Virol. 73, 1565 (1999)
  7. Delelis, O., Saib, A. and Sonigo, P. : Biphasic DNA synthesis in spumaviruses. J. Virol. 77, 8141 (2003) https://doi.org/10.1128/JVI.77.14.8141-8146.2003
  8. Yu, S. F., Baldwin, D. N., Gwynn, S. R., Yendapalli, S. and Linial, M. L. : Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnavieuses. Science 271, 1579 (1996) https://doi.org/10.1126/science.271.5255.1579
  9. Essle, J., Moebes, A., Heinkelein, M., Panhuysen, M., Mauer, B., Schweizer, M., Neumann-Haefelin, D. and Rethwilm, A. : An active foamy virus integrase is required for virus replication. J. Gen. Virol. 80, 1445 (1999) https://doi.org/10.1099/0022-1317-80-6-1445
  10. Oh, Y.-T. and Shin, C.-G. : Comparison of enzymatic activities of the HIV-1 and HFV integrases to their U5 LTR substrates. Bio. Mol. Biol. Int. 47, 612 (1999)
  11. Bushman, F. D. and Craigie, R. : Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl. Acad. Sci. USA 88, 1339 (1991)
  12. Craigie, R., Fugiwara, T. and Bushman, F. : The IN protein of moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62, 829 (1990) https://doi.org/10.1016/0092-8674(90)90126-Y
  13. Lafemina, R. L., Callahan, P. L. and Cordingley, M. G. : Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Virol. 65, 5624 (1991)
  14. Vink, C., Gent, V. C., Elgersma, Y. and Plasterk, R. : Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. J. Virol. 65, 4636 (1991)
  15. Katzman M. and Sudol, M. : Influence of subterminal viral DNA nucleotides on differential susceptibility to cleavage by human immunodeficiency virus type 1 and visna virus integrases. J. Virol. 70, 9069 (1996)
  16. Balakrishnan, M. and Jonosson, G. B. : Functional identification of nucleotides conferring substrate specificity to retroviral integrase reactions. J. Virol. 71, 1025 (1997)
  17. Lee, H. S., Kang, S. Y. and Shin, C.-G. : Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol. Cells 19, 246 (2005)
  18. Oh, J.-W., Oh, Y.-T., Kim, D. J. and Shin, C.-G. : Characterization of human immunodeficiency virus type 1 integrase mutants expressed in Escherichia coli. Mol. Cells 7, 688 (1997)
  19. Ellison, V. and Brown, P. O. : A stable complex between integrase and viral DNA ends mediates HIV integration in vitro. Proc. Natl. Acad. Sci. USA 91, 7316 (1994)
  20. Rice, P., Craigie, R. and Davies, D. R. : Retroviral integrases and their cousins. Curren. Opin. Struct. Biol. 6, 76 (1996) https://doi.org/10.1016/S0959-440X(96)80098-4
  21. Zhou, H., Rainey G. J., Wong, S.-K. and Coffin, J. M. : Substrate sequence seletion by retroviral integrase. J. Virol. 75, 1359 (2001) https://doi.org/10.1128/JVI.75.3.1359-1370.2001
  22. Masuda, T., Kuroda, M. J. and Harada, S. : Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J. Virol. 72, 8396 (1998)
  23. Reicin, A. S., Kalpana, G., Paik, S., Marmon, S. and Goff, S. : Sequence in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration. J. Virol. 69, 5904 (1995)