A Charge Pump with Improved Charge Transfer Capability and Relieved Bulk Forward Problem

전하 전달 능력 향상 및 벌크 forward 문제를 개선한 CMOS 전하 펌프

  • Park, Ji-Hoon (Semiconductor Division, Samsung Electronics) ;
  • Kim, Joung-Yeal (Semiconductor Division, Samsung Electronics) ;
  • Kong, Bai-Sun (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Jun, Young-Hyun (Semiconductor Division, Samsung Electronics)
  • 박지훈 (삼성전자 반도체총괄) ;
  • 김정열 (삼성전자 반도체총괄) ;
  • 공배선 (성균관대학교 정보통신공학부) ;
  • 전영현 (삼성전자 반도체총괄)
  • Published : 2008.04.25

Abstract

In this paper, novel CMOS charge pump having NMOS and PMOS transfer switches and a bulk-pumping circuit has been proposed. The NMOS and PMOS transfer switches allow the charge pump to improve the current-driving capability at the output. The bulk-pumping circuit effectively solves the bulk forward problem of the charge pump. To verify the effectiveness, the proposed charge pump was designed using a 80-nm CMOS process. The comparison results indicate that the proposed charge pump enhances the current-driving capability by more than 47% with pumping speed improved by 9%, as compared to conventional charge pumps having either NMOS or PMOS transfer switch. They also indicate that the charge pump reduces the worst-case forward bias of p-type bulk by more than 24%, effectively solving the forward current problem.

본 논문에서는 출력 단 전달 스위치로 NMOS와 PMOS를 병렬 결합하여 사용하고 벌크 펌핑 회로를 채용한 CMOS 전하펌프를 제안하였다. 제안된 전하 펌프는 NMOS 및 PMOS의 병렬 결합을 통하여 출력 단의 전류전달 능력을 향상시킬 수 있다. 또한, 채용된 벌크 펌핑 회로는 PMOS에 의한 벌크의 순방향 바이어스 문제를 효과적으로 해결할 수 있다. 제안된 회로의 성능을 확인하기 위하여, 80-nm CMOS 공정기술을 이용하여 전하 펌프를 설계하였다. 모사실험을 통한 비교 결과, 제안된 CMOS 전하 펌프는 기존의 NMOS 혹은 PMOS 만을 사용한 전하 펌프들과 비교하여 47% 이상의 전류전달 능력의 향상을 가져왔고 펌핑 속도도 9% 이상 개선되었으며, 동작 시 최대 벌크 순방향 전압 또한 24%이상 개선되어 벌크 순방향 바이어스 문제가 완화되었음을 확인하였다.

Keywords

References

  1. T. Yamagata, S. Tomishima, M. Tsukude, T. Tsuruda, Y. hashizume, and K. Arimoto, "Low voltage circuit design techniques for battery-operated and/or gigascale DRAMs", IEEE Journal of Solid-State Circuits, Vol. 30, pp. 1183-1188, Nov. 1995 https://doi.org/10.1109/4.475705
  2. D. Maksimovic and S. Dhar, "Switched-capacitor DC-DC converters for low-power on-chip applications", IEEE Power Elec. Specialists Conf., pp. 54-59. June, 1999
  3. C. Wu, H. Chou, "New latch-up failure mechanism between different power pins in the mixed-voltage process", IPFA 2004, pp. 81-84, July 2004
  4. Dickson J. F., "On-Chip High Voltage Generation in MNOS Integrated Circuits Using an Improved Voltage Multiplier Technique", IEEE Journal of Solid-State Circuits, vol. SC-I 1, No. 3, pp. 374-378, June 1976
  5. J. Wu, K. Chang, "MOS charge pumps for low-voltage operation", IEEE Journal of Solid-State Circuits, Vol. 33, No. 4, pp. 592-597, April 1998 https://doi.org/10.1109/4.663564
  6. Favrat. P., Deval. P., Declercq. M.J., "A High-Efficiency CMOS Voltage Doubler", IEEE Journal of Solid-State Circuits, Vol. 33, No. 3, pp. 410-416, March 1998 https://doi.org/10.1109/4.661206
  7. S. Cho, J. Lee, H. Park, G. Lim, Y. Kim, "Two-Phase Boosted Voltage Generator for Low-Voltage DRAMs", IEEE Journal of Solid-State Circuits, Vol. 38, No. 10, pp. 1726-1729, Oct. 2003 https://doi.org/10.1109/JSSC.2003.817592
  8. F. Su, W. Ki, C. Tsui, "High efficiency cross-coupled doubler with no reversion loss", ISCAS 2006, 4pp. May 2006