A Study for Design and Performance Improvement of the High-Sensitivity Receiver Architecture based on Global Navigation Satellite System

GNSS 기반의 고감도 수신기 아키텍처 설계 및 성능 향상에 관한 연구

  • 박지호 (대구경북과학기술연구원) ;
  • 오영환 (광운대학교 전자통신공학과)
  • Published : 2008.04.25

Abstract

In this paper, we propose a GNSS-based RF receiver, A high precision localization architecture, and a high sensitivity localization architecture in order to solve the satellite navigation system's problem mentioned above. The GNSS-based RF receiver model should have the structure to simultaneously receive both the conventional GPS and navigation information data of future-usable Galileo. As a result, it is constructed as the multi-band which can receive at the same time Ll band (1575.42MHz) of GPS and El band (1575.42MHz), E5A band (1207.1MHz), and E4B band (1176.45MHz) of Galileo This high precision localization architecture proposes a delay lock loop with the structure of Early_early code, Early_late code, Prompt code, Late_early code, and Late_late code other than Early code, Prompt code, and Late code which a previous delay lock loop structure has. As we suggest the delay lock loop structure of 1/4chips spacing, we successfully deal with the synchronization problem with the C/A code derived from inaccuracy of the signal received from the satellite navigation system. The synchronization problem with the C/A code causes an acquisition delay time problem of the vehicle navigation system and leads to performance reduction of the receiver. In addition, as this high sensitivity localization architecture is designed as an asymmetry structure using 20 correlators, maximizes reception amplification factor, and minimizes noise, it improves a reception rate. Satellite navigation system repeatedly transmits the same C/A code 20 times. Consequently, we propose a structure which can use all of the same C/A code. Since this has an adaptive structure and can limit(offer) the number of the correlator according to the nearby environment, it can reduce unnecessary delay time of the system. With the use of this structure, we can lower the acquisition delay time and guarantee the continuity of tracking.

이 논문은 위성항법시스템의 문제점들을 해결하기 위하여 GNSS 기반의 RF 수신단과 고정밀 측위 아키텍처 그리고 고감도 측위 아키텍처를 제안하였다. GNSS 기반의 RF 수신단 모델은 기존 GPS와 향후 사용되어질 갈릴레오의 항법정보데이터를 동시에 수신할 수 있는 구조를 가져야 한다. 따라서 GPS의 L1대역인 1575.42MHz와 갈릴레오의 El대역인 1575.42MHz, E5A대역인 1207.1MHz 그리고 E5B대역인 1176.45MHz를 동시에 수신할 수 있는 다중 밴드로 구성하였다. 고정밀 측위 아키텍처는 기존 상관기 구조가 가지고 있는 Early코드, Prompt코드, Late코드를 사용하는 1/2칩 이격 구조가 아닌 Early_early코드, Early_late코드, Prompt코드, Late_early코드, Late_late 코드 구조의 상관기를 제안하였다. 이렇듯 1/4칩 이격의 상관기 구조를 제안하여, 위성항법시스템으로부터 송신되는 신호의 부정확성으로 인해 생기는 C/A코드와의 동기 문제를 해결하였다. C/A코드와의 동기 문제는 차량용 항법시스템의 동기 획득 지연 시간 문제가 발생되어, 수신기의 성능 저하를 가져온다. 다음으로 고감도 측위 아키텍처는 20개의 코럴레이터(correlator)를 사용하여 비대칭 구조로 설계하여 수신 증폭률을 최대화하고, 잡음을 최소화하여 수신율을 향상시키도록 하였다. 위성항법시스템은 동일한 C/A코드를 20번 반복하여 전송한다. 따라서 동일한 C/A코드를 모두 사용할 수 있는 구조를 제안하였고, 적응형 구조를 가지고 있어, 주변 환경에 따라 코럴레이터의 수를 제한할 수 있어, 불필요한 시스템의 동작 지연 시간을 줄일 수 있다. 이러한 구조의 사용으로 동기 획득 지연 시간을 줄일 수 있고, 동기 추적의 연속성을 보장할 수 있다. 이는 위성항법시스템의 수신기 성능을 향상시키는 결과를 가져온다.

Keywords

References

  1. Elliott D. Kaplan, Understanding GPS : Principles and Applications, Artech House, 1996
  2. Bradford W. Parkinson, James J. Spiker Jr., et al., Global Positioning System : Theory and Applications, Volume I and Volume II, American Institute of Aeronautics and Astronautics. 1996
  3. Pratap Mistra, Per Enge, Global Positioning System : Signals, Measurements and Performance, Ganga-Jamuna Press, 2001
  4. James Bao-yen Tsui, Fundamentals of Blobal System Receivers A Software Approach, John Wiley & Sons, Inc. 2000
  5. Kai Borre, Dennis M. Akos, Nicolaj Bertelsen, Peter Rinder, Soren Holdt Jensen, A Software-defined GPS and Galileo Receiver, Birkhauser, 2000
  6. Ramjee Prasad, Marina Ruggieri, Applied Satellite Navigation Using GPS, Galileo, and Augmentation Systems, Artech House, 2005
  7. Ahmed El-Rabbany : Introduction to GPS : The Global Positioning System, second Edition, Artech House, 2006
  8. 최윤수, 허민, 서용철, Global positioning System : 신 GPS 측량의 기초, 대한측량협회, 2005
  9. 성경모, 정용일, 배상진, GPS : Golba Positioning System, 한국과학기술정보연구원, 2003.(362)
  10. M. Joseph III, software Radio Architecture : Object-Oriented Approaches to Wireless Systems Engineering, John Wiley & Sons, Inc. 2000
  11. M. Joseph III and Z. Zvonar, "Software Radio Technologies : Selected Readings", IEEE Press, 2001
  12. 김창환, " GPS 기술 동향,"전자부품연구원 전자정보센터, 2005
  13. Bryan R. Townsend, D.J. Richard van Nee, "Performance Evaluation of the Multipath Estimating Delay Lock Loop", ION national technical meeting, Anaheim, California, January 18-20, 1995
  14. Jean_Marie Zogg, GPS Basics : Introduction to the system Application overview, u-blox ag, 2002
  15. Annex A, Global Positioning System Standard Positioning Service Signal Specification, 2nd Edition, June 2, 1995
  16. Bengt Boberg and Seve-Lennart Wirkander, "Integrating GPS and INS : Comparing the Kalman estimator and Particle Estimator", ICARCV'02, pp. 484-490, Dec 2002
  17. Walsh, D, P Shardlow et al, "Real Time Differential Positioning using GPS and GLONASS", DSNS'96.St. Petersburg, 1996
  18. 최일흥, "자기 상관 함수 기울기 변화를 이용한 다중 경로 오차 감쇄 기법, 충남대학교 박사학위 논문, 2003
  19. Paul Flament, "Galileo : A New Dimension in International Satellite Navigation", 46th International Symposium Electronics in Marine, ELMAR-2004, pp. 6-14, June 2004
  20. 주광혁, "갈릴레오 프로젝트의 개요 및 진행현황", 항공우주산업기술동향지 3권1호, pp. 79-85, 2005
  21. Michael S. Braasch, A. J. VAN Dierendonck, "GPS Receiver Architectures and Measurements", Proceedings of the IEEE, vol. 87, No. 1, pp. 48-64, January 1999 https://doi.org/10.1109/5.736341
  22. Ronald A. Iltis, Laurence B. Milstein, "Performance Analysis of Narrow-Band interference Rejection Techniques in DS Spresd-Spectrum Systems", IEEE transaction on communications, vol. com-32, No. 11, pp. 1169-1177, November 1984
  23. W. Zhuang, J. M. Tranquilla, "Effects of multipath and antenna on GPS observables", IEE Proc-Radar, Sonar Naving., vol. 142, No.5, pp. 267-175, 1995 https://doi.org/10.1049/ip-rsn:19951998
  24. Christopher J. comp, Penina Axelrad, "Adaptive SNR-Based Carrier Phase Multipath Mitigation Technique", IEEE transaction on aerospace and electronic systems, vol. 34, No.1, pp. 264-276, January 1998 https://doi.org/10.1109/7.640284
  25. Jerome Soubielle, Inbar Fijalkow, Patrick Duvaut, Alain Bibaut, "GPS Positioning in a Multipath Environment", IEEE transaction on signal processing, vol. 50, No. 1, pp. 141-150, 2002 https://doi.org/10.1109/78.972490
  26. Mark C. Laxton, Stewart L. DeVilbiss, " GPS Multipath Mitigation During Code Tracking", proceeding of the American conference Albuquerque, New Mexico, pp. 1429-1433, 1997
  27. Bishop G.J. et al, "Multipath effect on the determination of absolute ionospheric time delay" from GPS signals Radio Science, vol. 20, No. 3, 1985
  28. Ceva J. G., Parkinson B.W, "Multipath Interference in Orbiting Receivers Due to Earth Surface Reflection Sixth International Technical Meeting of The Satellite Division of The Institute of Navigation, Salt Lake City, 1993
  29. Manuel Hernandez-Pajares, et al, "Feasibility of Wide-area Subdecimeter Navigation With Galileo and Modernized GPS", IEEE transaction on geoscience and remote sensing, vol. 4, No. 9, pp. 2128-2131, Sep 2003
  30. Navstar GPS Space Segment/Navigation User Interfaces, ICD-GPS-200C, IRN-200C-005RI, Rev. C, E1 Segundo, CA : Arinc Research Coporation, Jan 2003
  31. Gonzalo Seco-Granados, et al. " ML Estimator and Hybrid Beamformer for Multipath and Interference Mitigation in GNSS Receivers", IEEE t
  32. R. Housley, D. Whiting, and N. Ferguson, "Counter with CBC-MAC (CCM)," submitted to NIST, June 20ansaction on signal processing, vol. 53, No. 3, pp. 1194-1208, 2005
  33. Frank Engel, Gernot Hiser, " An Open GNSS Receiver Platform Architecture" The 2004 International Symposium on GNSS/GPS, 2004
  34. Gerard Lachapelle, "GNSS Indoor Location Technologies", Journal of Global Positioning Systems, vol. 3, No. 1-2, pp. 2-11, 2004.(363) https://doi.org/10.5081/jgps.3.1.2