A Novel Approach to Investigating Protein/Protein Interactions and Their Functions by TAP-Tagged Yeast Strains and its Application to Examine Yeast Transcription Machinery

  • Jung, Jun-Ho (Department of Advanced Technology Fusion, Konkuk University) ;
  • Ahn, Yeh-Jin (Division of Life Science, College of Natural Sciences, Sangmyung University) ;
  • Kang, Lin-Woo (Department of Advanced Technology Fusion, Konkuk University)
  • Published : 2008.04.30

Abstract

Tandem affinity purification (TAP) method combined with LC-MS/MS is the most accurate and reliable way to study the interaction of proteins or proteomics in a genome-wide scale. For the first time, we used a TAP-tag as a mutagenic tool to disrupt protein interactions at the specific site. Although lots of commonly used mutational tools exist to study functions of a gene, such as deletional mutations and site-directed mutagenesis, each method has its own demerit. To test the usefulness of a TAP-tag as a mutagenic tool, we applied a TAP-tag to RNA polymerase II, which is the key enzyme of gene expression and is controlled by hundreds of transcription factors even to transcribe a gene. Our experiment is based on the hypothesis that there will be interrupted interactions between Pol II and transcription factors owing to the TAP-tag attached at the C-terminus of each subunit of Pol II, and the abnormality caused by interrupted protein interactions can be observed by measuring a cell-cycle of each yeast strain. From ten different TAP-tagged strains, Rpb7- and Rpb12-TAP-tagged strains show severe defects in growth rate and morphology. Without a heterodimer of Rpb4/Rpb7, only the ten subunits Pol II can conduct transcription normally, and there is no previously known function of Rpb7. The observed defect of the Rpb7-TAP-tagged strain shows that Rpb7 forms a complex with other proteins or compounds and the interruption of the interaction can interfere with the normal cell cycle and morphology of the cell and nucleus. This is a novel attempt to use a TAP-tag as a proteomic tool to study protein interactions.

Keywords

References

  1. Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne, P. G. Amanatides, et al. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185-2195 https://doi.org/10.1126/science.287.5461.2185
  2. Bushnell, D. A. and R. D. Kornberg. 2003. Complete, 12- subunit RNA polymerase II at 4.1-A resolution: Implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100: 6969-6973
  3. Bushnell, D. A., K. D. Westover, R. E. Davis, and R. D. Kornberg. 2004. Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4.5 angstroms. Science 303: 983-988 https://doi.org/10.1126/science.1090838
  4. Chung, W.-H., J. L. Craighead, W.-H. Chang, C. Ezeokonkwo, A. Bareket-Samish, R. D. Kornberg, and F. J. Asturias. 2003. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Molec. Cell 12: 1003-1013 https://doi.org/10.1016/S1097-2765(03)00387-3
  5. Collins, S. R., P. Kemmeren, X. C. Zhao, J. F. Greenblatt, F. Spencer, F. C. Holstege, J. S. Weissman, and N. J. Krogan. 2007. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteomics 6: 439-450 https://doi.org/10.1074/mcp.M600381-MCP200
  6. Consortium, T. C. E. S. 1998. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282: 2012-2018 https://doi.org/10.1126/science.282.5396.2012
  7. Cramer, P., D. A. Bushnell, J. Fu, A. L. Gnatt, B. Maier-Davis, N. E. Thompson, et al. 2000. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640-649 https://doi.org/10.1126/science.288.5466.640
  8. Cramer, P., D. A. Bushnell, and R. D. Kornberg. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863-1876 https://doi.org/10.1126/science.1059493
  9. Davis, J. A., Y. Takagi, R. D. Kornberg, and F. J. Asturias. 2002. Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Molec. Cell 10: 409-415 https://doi.org/10.1016/S1097-2765(02)00598-1
  10. DeLano, W. L. 2002. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, U.S.A.
  11. Gavin, A. C., P. Aloy, P. Grandi, R. Krause, M. Boesche, M. Marzioch, et al. 2006. Proteome survey reveals modularity of the yeast cell machinery. Nature 440: 631-636 https://doi.org/10.1038/nature04532
  12. Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, et al. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141-147 https://doi.org/10.1038/415141a
  13. Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea, and J. S. Weissman. 2003. Global analysis of protein expression in yeast. Nature 425: 737-741 https://doi.org/10.1038/nature02046
  14. Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, et al. 1996. Life with 6000 genes. Science 274: 546, 563-567
  15. Gupta, P. and K. H. Lee. 2007. Genomics and proteomics in process development: Opportunities and challenges. Trends Biotechnol. 25: 324-330 https://doi.org/10.1016/j.tibtech.2007.04.005
  16. Initiative, T. A. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815 https://doi.org/10.1038/35048692
  17. Kim, I. S., H. S. Yun, and I. N. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17: 207-217
  18. Kim, Y.-J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599-608 https://doi.org/10.1016/0092-8674(94)90221-6
  19. Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, et al. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637-643 https://doi.org/10.1038/nature04670
  20. Kus, B., A. Gajadhar, K. Stanger, R. Cho, W. Sun, N. Rouleau, et al. 2005. A high throughput screen to identify substrates for the ubiquitin ligase Rsp5. J. Biol. Chem. 280: 29470-29478 https://doi.org/10.1074/jbc.M502197200
  21. Lee, K., H. S. Joo, Y. H. Yang, E. J. Song, and B. G. Kim. 2006. Proteomics for Streptomyces: "Industrial proteomics" for antibiotics. J. Microbiol. Biotechnol. 16: 331-348
  22. Lee, Y. C., S. Min, B. S. Gim, and Y. J. Kim. 1997. A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. Mol. Cell. Biol. 17: 4622-4632 https://doi.org/10.1128/MCB.17.8.4622
  23. Lindstrom, D. L., S. L. Squazzo, N. Muster, T. A. Burckin, K. C. Wachter, C. A. Emigh, J. A. McCleery, J. R. Yates 3rd, and G. A. Hartzog. 2003. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol. Cell. Biol. 23: 1368-1378 https://doi.org/10.1128/MCB.23.4.1368-1378.2003
  24. Meinhart, A., T. Kamenski, S. Hoeppner, S. Baumli, and P. Cramer. 2005. A structural perspective of CTD function. Genes Dev. 19: 1401-1415 https://doi.org/10.1101/gad.1318105
  25. Mitsuzawa, H., E. Kanda, and A. Ishihama. 2003. Rpb7 subunit of RNA polymerase II interacts with an RNA-binding protein involved in processing of transcripts. Nucleic Acids Res. 31: 4696-4701 https://doi.org/10.1093/nar/gkg688
  26. Peiro-Chova, L. and F. Estruch. 2007. Specific defects in different transcription complexes compensate for the requirement of the negative cofactor 2 repressor in Saccharomyces cerevisiae. Genetics 176: 125-138 https://doi.org/10.1534/genetics.106.066829
  27. Ptacek, J., G. Devgan, G. Michaud, H. Zhu, X. Zhu, J. Fasolo, et al. 2005. Global analysis of protein phosphorylation in yeast. Nature 438: 679-684 https://doi.org/10.1038/nature04187
  28. Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin. 2001. The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods 24: 218-229 https://doi.org/10.1006/meth.2001.1183
  29. Sanders, S. L., J. Jennings, A. Canutescu, A. J. Link, and P. A. Weil. 2002. Proteomics of the eukaryotic transcription machinery: Identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell. Biol. 22: 4723-4738 https://doi.org/10.1128/MCB.22.13.4723-4738.2002
  30. Schaft, D., A. Roguev, K. M. Kotovic, A. Shevchenko, M. Sarov, K. M. Neugebauer, and A. F. Stewart. 2003. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31: 2475-2482 https://doi.org/10.1093/nar/gkg372
  31. Takagi, Y., G. Calero, H. Komori, J. A. Brown, A. H. Ehrensberger, A. Hudmon, F. Asturias, and R. D. Kornberg. 2006. Head module control of mediator interactions. Mol. Cell. 23: 355-364 https://doi.org/10.1016/j.molcel.2006.06.007
  32. Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, et al. 2001. The sequence of the human genome. Science 291: 1304-1351 https://doi.org/10.1126/science.1058040
  33. Yuryev, A., M. Patturajan, Y. Litingtung, R. V. Joshi, C. Gentile, M. Gebara, and J. L. Corden. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93: 6975-6980