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Abstract

In this paper we derived fuzzy entropy that is based on similarity measure. Similarity measure represents the degree
of similarity between two informations, those informations characteristics are not important. First we construct
similarity measure between two informations, and derived entropy functions with obtained similarity measure. Obtained
entropy 1s verified with proof. With the help of one-to-one similarity is also obtained through distance measure, this

similarity measure is also proved in our paper.
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1. Introduction

Obtaining of the degree of similarity between two or
more data has central role for the fields of decision
making, pattern classification, or etc.. Quantity of dif-
ference can be useful to discriminate or cluster for
various Informations. Until now the research of design-
ing similarity measure has been made by numerous re-
searchers(1-6]. For fuzzy set, there is an uncertainty
knowledge in fuzzy set itself. Hence information of the
data can be obtained from analyzing the fuzzy member—
ship function. Thus most studies about fuzzy set are
focussed on designing similarity measure based on
membership function. In the previous results, similarity
measures are obtained through fuzzy number[1-4].
Fuzzy number provide similarity measure easily.
However considering similarity measures are restricted
within triangular or trapezoidal membership func-
tions[1-4]. In this paper we try to analyze relations be-
tween fuzzy entropy and similarity. With the help of
distance measure, we design the similarity measure.
Proposed similarity measure produce fuzzy entropy
based on relation between fuzzy entropy and similarity
measure. Furthermore we have proved the entropy that
is derived from similarity measure.

First we introduce the properties of fuzzy entropy,
distance measure and similarity measure. Similarity
measure 1s also proposed using distance measure.
Proposed similarity measure construct fuzzy entropy
with the relation of fuzzy entropy and similarity
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measure. Notations of this paper are used Liu’s [7].

2. Similarity measure and fuzzy entropy
analysis

In this chapter, introduction of fuzzy entropy and
similarity measure are carried out. Furthermore sim-
llarity measures are also proposed with distance
measure.,

2.1 Fuzzy entropy, similarity measure

Fuzzy entropy represents the fuzziness of fuzzy set.
Fuzziness of fuzzy set i1s represented through degree of
certainty or uncertainty, hence the entropv is obtained
from fuzzy membership function itself. Liu presented
the axiomatic definitions of fuzzy entropy and similarity
measure [7], and these definitions have the meaning of
difference or closeness for different fuzzy membership
functions. First we introduce fuzzy entropy. We design
fuzzy entropy based on distance measure satisfying
definition of fuzzy entropy.

Definition 2.1 [7] A real function e: F(X)—R™ is

called an entropy on £(X), if ¢ has the following prop-
erties:

where [1/2] is the fuzzy set in which the value of the
membership function is 1/2, RT=1[0,0), X is the uni-
versal set, F(X) is the class of all fuzzy sets of X,

P(X) is the class of all crisp sets of X, and D€ is the
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complement of D.

There are a lot of fuzzy entropy satisfying Definition
2.1. We have designed fuzzy entropy in our previous
literature [10]. Hence two fuzzy entropy are illustrated
without proofs.

entropy 1. If distance d  satisfies

=d(A%BY, A,BE F(X), then

Fuzzy
d(A,B)

e(A)=2d((ANA,,, ), [1])+2d((40 4, ),[0])—

i1s fuzzy entropy.

entropy 2 If distance d  satisfies

=d(AY%BY, A,BEF(X), then

Fuzzy
d(A,B)

e(4) =2d((ANAg,),[0) +2d((4U 4,,,),[1])

is also fuzzy entropy.

Exact meaning of fuzzy entropy of fuzzy set A is
fuzzy entropy of fuzzy set A with respect to crisp set
of fuzzy set A. We commonly consider crisp set as
Apeqr O Ag,.. In the above fuzzy entropy. one of well-

known Hamming distance is commonly used as dis-
tance measure between fuzzy sets 4 and B,

d(A, B) %Zi] z;) ~ gz,

where X=1x,,25,-- z,, | k| is the absolute value of k.
ps(z) is the membership function of AEF(X).

Basically fuzzy entropy means the difference between
two fuzzy membership functions. Next we will in-
troduce the smmilarity measure, and it describes the de-
gree of closeness between two fuzzy membership
functions. It is also found in literature of Liu.

Definition 2.2 [7] A real function s F *>R™ is called
a similarity measure, if ¢ has the following properties:

(S1) s(A.B) =s(B,A),Y A,.B € F(X)

(S2) s(D,DY)=0, VD €P(X)

(83) s(C.C) =max 4 peps(A4,B), V C EF(X)

(84) VA,B,CEFX), if ACBcC C, then
s{A,B) > s(A,C) and s(B,C) = s(A,C).

Fuzzy normal similarity measure on F is also ob-
tained by the division of max.pe,s(CD). With

Definition 2.2, we propose the following theorem as the
similarity measure.

Theorem 2.1 For any set A,BEF(X), if 4 satisfies
Hamming distance measure and d(A4,B) =d(A% B9,

then
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s(4,B)=1—-d((ANnB9,[0]) —d((4uB9,1]) D

is the similarity measure between set A and set B.
proof. Commutativity of (S1) is proved through

s(A,B)=1—d((ANnB9,l0]) —d((AUBY,l1
=1-d((4AnB9C o 0) —d(( UBC)C
=1—d((BUA9,1]) =d((BNA),[0
=3s(B, A).

To show the property of (S2),

s(A4, 49 =1~ d(( N (A499),[0]) —d{((AU (49),[1))
=1—(d( []) d(A4,[1]))
=1—1-1=0

is clear. (S3) is clear from the relation

s{4,B)=1—-d((ANB °),[0]) —d((AU B °),[1])
< 1—d((DN D 9,[0]) —d((DUD 9),[1])
=s(D,D),

where the inequality is proved by

d((ANBI,0) =d((DNDA,[0]) and
d((AU B 9,01]) = d((DU D 9),[1]).

Finally, V A,B,C €F(X) and A C BC C imply

s(4,B) =1—d((AN B °),0}) —d((AU B ),[1])
=1-d([0],[0]) —d((AUB*),[1})
= 1—d(AN C40]) —d(AU C<,[1])
=1-d([0},[0]) —d(4U C*,[1])
=s(4,0).

s(B,C)=1—d((Bn C°),[0]) —d((BU C),[1])
=1—d([0],[0]) —=d((BU C*°),[1])
> 1—d(AN C5[0]) —d(4AuU Cc,[1])
=1-d([0],[0]) —d(AU C*,[1])
=s(A4,C)

is also satisfied with d((4U B 9,[1]) = d((4U C9,[1])

and d((BU C9,[1]) = d((4AU C9,[1]).

We have proposed the similarity measure that are in-—
duced from distance measure. This similarity is useful
for the non interacting fuzzy membership function pair.
Another similarity is also obtained, and it can be found
in our previous literature [6].

Theorem 2.2 For any set A,BEF(X) if d satisfies
Hamming distance measure, then

s(A4,B)=2—d((ANB),[1])—-d((4AUB),[0])) (2

1s the similarity measure between set A and set B. To
be a similarity measure, Theorem 2.2 does not need

condition d(4,B) =d(A, B . Because commutativity is



clear from the theorem itself. Also this similarity (2) is
useful for the interacting membership function pair.

Liu also pointed out that there is an one—to—one rela-
tion between all distance measures and all similarity
measures, d+s =1, In the next section, we derive sim-
larity measure that is generated by distance measure.
Furthermore entropy 1s derived through similarity
measure by the properties of Liu.

2.2 One-to-one correspondence

It 1s obvious that next Hamming distance is repre-—
sented as

d(4, B) =d((AN B),[1])) - (1—d((AU B),[0])). (3)

Where ANB=minlp,(x,),ug(z,)) and
AUB=max(p,(z;).uz(z,)) are satisfied With the

Proposition 3.4 of Liul7], we can generate the similarity
measure or distance measure through distance measure
or similarity measure [7].

Proposition 2.1[7] There exists an one—-to—one correla—
tion between all distance measures and all similarity
measures, and a distance measure d and its correspond—
ing similarity measure s satisfy s+d=1.

With the property of s =1—d, we can construct the
similarity measure generated by distance measure d,
that 1s s <d>. From (3) it is natural to obtain follow-
ing result.

d(A4,B)=d((ANB),[1]) +d((AU B),[0]) —1

=1—s5(A4,B)

Therefore we propose the similarity measure with
above expression.

s<dz?2-d{(AnB),1))—-d((AuB).b])

This similanty measure i1s exactly same with (2). At
this point, we verified the one-to-one relation of dis-
tance measure and similarity measure. In the next

chapter, we verify that the fuzzy entropy is derived
through similarity (2).

3. Entropy derivation with similarity
measure

Liu also suggested propositions about entropy and
similarity measure. He also insisted that the entropy
can be generated by similarity measure and distance
measure, those are denoted by e <s> and e <d >.

3.1 Entropy generation by similarity

Proposition 3.5 and 3.6 of reference [7] are summar-
1zed as follows.

Fuzzy Entropy Construction based on Similarity Measure

Proposition 3.1 [7] If ¢ is a similarity measure on #,
define

e(Ad)=s(4,49, VAEF.

Then e i1s an entropy on F.

Now we check whether our similarities (1) and (2)
satisfy Proposition 3.1. Proof can be obtained by check-
ing whether

s(A4,49=2—d((4AN A9,[1]) —d((4AU A49,[0])

satisfy from (El) to (E4) of Definition 2.1.

For (E1),V D= P(X),

s(D,D) =2—d{{DN D,11]) —d((DU DY,l0])
=2—d([0],[1]) —d([1],[0]) =0

(E2) represents that crisp set 1/2 has the maximum

entropy value. Therefore, the entropy e([1/2]) sat-
1sfies

s(l1/2],1/2]¢) = 2—a(({1/2]n [1/2]°).[1])
—d(([1/2]u [1/2]9),00D)
=2—d([1/2],1]) —d([1/2],0])
=2—-1/2—-1/2=1

In the above equation, [1/2]¢=1{1/2] is satisfied.

(E3) shows that the entropy of the sharpened version
of fuzzy set A, e(A"), is less than or equal to e(A).

s(A%, 4" =2—a((A"N AT, 1) —a((4a"uAa™),b)
< 2—d((ANA49,11]) —d((4U A49,[0])
=s(A,A4°

Finally, (E4) is proved directly

s(A,49=2—d((ANA9,[1)) —d((4UA9,[0])
=2—d((A°NA4),[1]) —d({4°U 4),[0])
=s(A%A4)

From the above proof, our similarity measure
s(A4,49=2—d{(ANA9,[1]) —d{(4U 49,0

generate fuzzy entropy.

Next another similarity (1) between 4 and A4° is

s(A,A"):l—d((AﬂA),[OD d((AU A4),[1])

This similarity always satisfies zero.
For (El1),V D= P(X),
s(D,D)=1—d(D,0]) —d(D,[1]) =0

(E2), s{[1/2),[1/2]) =1—d([1/2),0)) —d([r/2],1]) =0
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For (E3), s(A4",47) =5(4,49 =0

Finally, (E4) is proved similarly
s(A4,49=s(4%4) =0.
From the above proof, our similarity measure
s(A4, A9 =1—d((AN A),[0]) —a{(4U 4),[1])

generate fuzzy entropy trivially.

This fact inform that the similarity between two fuz-
zy membership function contain two common parts.

N R A e
el ] a8 18! . HY

iy N
Fig. 1. Gaussian type two membership functions

Area C and D are both common area of two mem-
bership function. It is questionable area D satisfy com-—
mon area of two membership function. However prop-
erty (54) in Definition 2.2 tell us that area D satisfy
naturally s(A,B) > s(A,C) and s(B,C) = s(A,0), if
AcCc Bc (.

3.2 Relation of similarity and distance

With the property of one-to-one correspondence be-
tween similarity and distance, we have derived fuzzy
entropies. For the derivation of similarity measure,
s=1—d 1s also used. If we use distance measure (3)

d(A, B) =d((AN B),[1]) - (1—-d((AU B),[0})),
we obtain the corresponding similarity measure
s<d=2—d({ANB),[1])—d((4U B),[0]).

then this similarity is identical to (2).
From another similarity (1)

s(A, B) =1—d((AN B),[0]) —d((4AU BY),[1]),
is d(4, B) =d((ANB9,[0]) +d((AU BY9,[1]) satisfied ?

By the definition of distance measure of Liu [7],

d(A, B) =d((ANB),[0]) +d((AUB),11])
=d((AN B9 [0]9) +d((AUBY)C1]9)
=d((A°UB),[1]) +d((4°n B),[0])
=d(B,A).

d(A4, 4) =d((ANA9),[0]) +d((4UA49,[1])
= d([0],[0D) + d([11,[1]) =0

For d(4, B) =d((ANBY),[0]) +d((4UB),[1])

< d((Dn DY), o)) +d((pU DY), 1))
=d((DN D),0]) +d((DU D),[1))
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=d(D,[0]) +d(D,[1]) =1.

Hence it is natural that distance between crisp set
and its complement become maximal value. Finally,

d(A, B) =d((ANB°),[0]) +d{((4U BY),1])
< d((An ¢9,[0]) +d({AU C9),[1])
=d(4,0)

and

d(B,C) =d((Bn C),0]) +d((BU C9,[1])
< d((An 9. o) +d((4U C9,1])
=d(A,C)

are satisfied because of inclusion property, A € BC C.

In this section we have verified the relation between
similarity measure and distance measure. Derivation of
distance measure from similarity measure 1s obtained
easily.

4. Conclusions

We have derived the similarity measure that is de-
rived from distance measure. The proposed smmilarity
usefulness is proved. Furthermore with the relation be-
tween fuzzy entropy and similarity measure we also
verified that the fuzzy entropy is induced through sim-
ilarity measure. In this paper our proposed similarity
measures are provided for the design of fuzzy entropy.
Among the proposed similarity measure, a similarity
satisfy fuzzy entropy trivially. Even though there are
similarity measure satisfying similarity definition, there
can exist trivial fuzzy entropy. Finally, proposed sim-
llarity measure can be applied to the general types of
fuzzy membership functions.
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