DOI QR코드

DOI QR Code

Link Layer Traffic Control Algorithm to Improve the Performance of WLANs

무선 랜 성능 향상을 위한 링크 계층 트래픽 제어 알고리즘

  • Published : 2008.04.30

Abstract

Wide-spread deployment of infrastructure WLANs has made Wi-Fi an integral part of today's Internet access technology. WLANs suffer from degraded system throughput and each node's throughput fluctuates significantly in the saturation regime. In this paper, we propose a link layer traffic control mechanism which controls the offered load of DCF system. It is shown that the link layer traffic controller can improve DCF system throughput and reduce nodes' throughput fluctuation with properly controlled offered load. We propose a dynamic traffic control algorithm which can find an optimal offered load and show its performance improvement with ns-2 simulation.

오늘날 인프라 무선 랜은 많은 사용자들이 사용하는 중요한 인터넷 접속 기술이다. 무선 랜의 성능은 포화상태에서 시스템의 처리율이 저하되고, 각 노드의 처리율은 시간에 따라 심하게 변화하는 문제점이 있다. 본 논문에서는 링크 계층에서 DCF 시스템의 입력 로드를 조정하여 이러한 문제를 해결하는 트래픽 제어 방법을 제안한다. 트래픽 제어기를 사용하여 DCF로 유입되는 시스템 로드를 적절하게 조정하면 기존 MAC 프로토콜을 수정 없이도 시스템 처리율을 향상시키고 노드의 처리율 변화도 줄일 수 있는 것을 보인다. 또한, 시스템의 상황에 맞는 최적의 시스템 로드를 찾는 동적 제어 알고리즘을 제안하고, ns-2 시뮬레이션을 통하여 성능 향상을 보였다.

Keywords

References

  1. IEEE 802.11 part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Aug. 1999
  2. N. Abramson, "The Aloha system-another alternative for computer communications," Proc. of Fall Joint Comput. Conf. AFIPS Conf., pages 281-285, 1970
  3. R. Metcalfe and D. Boggs, "Ethernet: distributed packet switching for local computer networks," Communications of the ACM, vol. 19, no. 7, pp. 395-404, 1976 https://doi.org/10.1145/360248.360253
  4. G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535-547, 2000 https://doi.org/10.1109/49.840210
  5. F. Cali, M. Conti, and E. Gregori, "IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism," IEEE Journal on Selected Areas in Communications, vol. 18, no. 9, pp. 1774-1786, 2000 https://doi.org/10.1109/49.872963
  6. S. Lu, T. Nandagopal, and V. Bharghavan, "A wireless fair service algorithm for packet cellular networks," Proc. of ACM MobiCom '98, pp. 10-20, 1998
  7. N. Vaidya, P. Bahl, and S. Gupta, "Distributed fair scheduling in a wireless LAN," Proc. of ACM MobiCom '00, pp. 167-178, 2000
  8. A. Balachandran, G. Voelker, P. Bahl, and P. Rangan, "Characterizing user behavior and network performance in a public wireless LAN," Proc. of ACM SIGMETRICS '02, pp. 195-205, 2002
  9. D. Kotz and K. Essien, "Analysis of a campus-wide wireless network," Proc. of ACM MobiCom '02, pp. 107-118, 2002
  10. D. Tang and M. Baker, "Analysis of a local-area wireless network," Proc. of ACM MobiCom '00, pp. 1-10, 2000
  11. A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh, "A Client-driven Approach for Channel Management in Wireless LANs," Proc. of Infocom '06, pp. 1-12, 2006
  12. B. Kauffmann, François Baccelli, Augustin Chaintreau, Vivek Mhatre, Konstantina Papagiannaki, and Christophe Diot, "Measurement-Based Self Organization of Interfering 802.11 Wireless Access Networks," Proc. of Infocom '07, pp. 1451-1459, 2007
  13. A. Mishra, V. Shrivastava, D. Agrarwal, S. Bangerjee, and S. Ganguly, "Distributed Channel Management in Uncoordinated Wireless Environments," Proc. of Mobicom '06, pp. 170-181, 2006
  14. E. Rozner, Y. Mehta, A. Akella, and L. Qiu, "Traffic-Aware Channel Assignment in Enterprise Wireless LANs," Proc. of ICNP '07, pp. 133-143, 2007
  15. D. Boggs, J. Mogul, and C. Kent, "Measured capacity of an Ethernet: myths and reality," Proc. of ACM SIGCOMM '88, pp. 222-234, 1988
  16. H. Kim and J. Hou, "Improving protocol capacity with model-based frame scheduling in IEEE 802.11-operated WLANs," Proc. of ACM MobiCom '03, pp. 190-204, 2003
  17. The network simulator - ns-2. http://www.isi.edu/ nsnam/ns/