DOI QR코드

DOI QR Code

In-Situ Formation of Porous HAp Using Polymer Foam Process

폴리머 발포법을 이용한 다공성 HAp 지지체의 제조 및 특성 평가

  • Kim, Zin-Kook (School of Materials Science and Engineering, Pusan National University) ;
  • Ji, Sang-Yong (School of Materials Science and Engineering, Pusan National University) ;
  • Ji, Hyung-Bin (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University)
  • Published : 2008.06.30

Abstract

Porous HAp with three-dimensional network channels was prepared in a polymer foam process using a in-situ formation. HAp/polyol with various HAp solid contents was formed with an addition of isocyanate. Under all conditions, the obtained porous HAp had pore sizes ranging $50\;{\mu}m$ to $250\;{\mu}m$. The influence of the HAp content on the physical and mechanical properties of porous HAp scaffolds was investigated. As the solid content increased, the porosity of the porous HAp decreased from 79.3% to 77.9%. On the other hand, the compressive strength of the porous HAp increased from 0.7 MPa to 3.7 MPa. With a HAp solid content of 15 g, the obtained porous HAp had physical properties that were more suitable for scaffolds compared to other conditions.

Keywords

References

  1. P. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell, Bio-technol., 13, 565 (1997)
  3. W. W. Minuth, M. Sittinger and S. Kloth, Cell Tissue Res., 291, 1 (1998) https://doi.org/10.1007/s004410050974
  4. L. M. Mathieu and J. E. Manson, T. L. Mueller, P. Bourban, D. P. Pioletti, R. Muller, and J. E. Manson, Biomaterials, 27, 905 (2006) https://doi.org/10.1016/j.biomaterials.2005.07.015
  5. H. R. Ramay and M. Zhang, Biomaterials, 24, 3293 (2003) https://doi.org/10.1016/S0142-9612(03)00171-6
  6. E. J. Lee, Y. H. Koh, B. H. Yoon, H. E. Kim, and H. W. Kim, Materials Letters, 61, 270 (2007)
  7. S. Yunoki, T. Ikoma, A. Monkawa, K. Ohta, M. Kikuchi, S. Sotome, K. Shinomiya, and J. Tanaka, Materials Letters, 60, 999 (2006) https://doi.org/10.1016/j.matlet.2005.10.064
  8. S. Deville, E. Saiz, and A. P. Tomsia, Acta Materialia, 55, 1965 (2007) https://doi.org/10.1016/j.actamat.2006.11.003
  9. KJL Burg, S Porter, and JF Kellam, Biomaterials, 21, 2347 (2000) https://doi.org/10.1016/S0142-9612(00)00102-2
  10. R. B. Martin, Mater. Sci. Forum., 293, 5 (1999) https://doi.org/10.4028/www.scientific.net/MSF.293.5
  11. C. R. Nunes, S. J. Simske, R. Sachdeva and L. M. Wolford, J. Biomed. Mater. Res., 36, 560 (1997) https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<560::AID-JBM15>3.0.CO;2-E
  12. M. Modesti, and A Lorenzetti, European polymer Journal, 37, 949 (2001) https://doi.org/10.1016/S0014-3057(00)00209-3
  13. C Ligoure, M Cloitre, C L Chatelier, F Monti, and L Leibler, polymer, 46, 6402 (2005) https://doi.org/10.1016/j.polymer.2005.04.089
  14. S. F. Hulbert, J. S. Morrison and J. J. Klawitter, J. Biomed. Mater. Res., 6, 347 (1972) https://doi.org/10.1002/jbm.820060505
  15. T. J. Flatley, K. LLynch and M. Benson, Clin. Orthop., 179, 246 (1983) https://doi.org/10.1097/00003086-198310000-00038