DOI QR코드

DOI QR Code

Synthesis and Characterization of NixMn1-xFe2O4 Nanoparticles by a Reverse Micelle Process

  • Kim, Sun-Woog (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.) ;
  • Kim, Hyeon-Cheol (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.) ;
  • Kim, Jun-Seop (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.) ;
  • Kim, Hyun-Ju (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Science Engineering., Changwon National Univ.)
  • Published : 2008.06.30

Abstract

A preparation of $Ni_xMn_{1-x}Fe_2O_4$ nanoparticles produced via the reduction of Nickel nitrate hexahydrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate with hydrazine in Igepal CO-520/cyclohexane reverse micelle solutions was investigated. Transmission Electron Microscope (TEM), X-ray Diffraction (XRD) and Vibration Sample Magnetometer (VSM) analyses showed that the resultant nanoparticles increased the molar ration of water to Igepal CO-520 as the concentrations of Nickel nitrate hexahyrate, Manganese (II) nitrate hexahydrate and Iron nitrate nonahydrate increased. The average size of the synthesized particles calcined at $600^{\circ}C$ for 2hrs was in the range of 20 nm to 30 nm, and the particle distribution was broadened. The phase of the synthesized particles was crystalline, and the magnetic behavior of the synthesized particles was superparamagnetism. The effect of the synthesis parameters of the molar ratio of water to surfactant and the calcination temperature was discussed.

Keywords

References

  1. D. S. Bae, S. W. Kim, H. W. Lee and K. S. Han, Mater. Lett., 57, 1997 (2003) https://doi.org/10.1016/S0167-577X(02)01119-9
  2. M. Shinkai, J. Biosci. Bioeng., 94, 606 (2002) https://doi.org/10.1016/S1389-1723(02)80202-X
  3. M. Rozman and M. Drofenik, J. Am. Ceram. Soc., 78(9), 2449 (1990) https://doi.org/10.1111/j.1151-2916.1995.tb08684.x
  4. V. E. Fertman, Magnetic Fluids Guidebook, Properties and Applications, Chp. 3, Hemisphere Publishing Corp, (1990)
  5. J. A. Brug, T. C. Anthony and J. H. Nickel, Magnetic Recording Head Materials, MRS Bull., Sept., 23 (1996)
  6. M. Seki, J. Sato and S. Usui, J. Appl. Phys., 63(5), 1424 (1988) https://doi.org/10.1063/1.339974
  7. S. Komarneni, E. Freagan, E. Bravel and R. Roy, J. Am. Ceram. Sci., 71(1), C26 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05773.x
  8. J. R. Ahn, D. S. Bae and J. S. Kim, J. Kor. Ceram. Soc., 37(10), 962 (2000)
  9. P. Sainamthip and V. R. W. Amarakoon, J. Am. Ceram. Soc., 71(2), C-92 (1988) https://doi.org/10.1111/j.1151-2916.1988.tb05839.x
  10. R. F. Ziolo, E. P. Giannelis, B. A. Weinstein, M. P. Ohoro, B. N. Ganguly, V. Mehrotra, M. W. Russell and D. R. Huffman, Science, 257, 219 (1992) https://doi.org/10.1126/science.257.5067.219
  11. D. S. Bae, S. W. Park, K. S. Han and J. H. Adair, Metals and Materials Int., 7(4), 399 (2001) https://doi.org/10.1007/BF03186086
  12. B. K. Paul and S. P. Moulik, J. Dispersion Sci. Technol., 18, 301 (1997) https://doi.org/10.1080/01932699708943740
  13. K. Ossed-Asare, and F. J. Arriagada, Ceram. Trans., 12, 3 (1990)
  14. V. pillai, P. Kumar, M. J. Hou, P. Ayyub, and D. D. Shah, Ady. Colloid Interface Sci., 55, 241 (1995) https://doi.org/10.1016/0001-8686(94)00227-4
  15. Ph. Monnoyer, A. Fonseca, J. B. Nagy, Colloid Surf. A: Physicochemical Eng. Aspects, 100, 233 (1995) https://doi.org/10.1016/0927-7757(95)03187-I
  16. M. P. Pileni, J. Phys. Chem., 97, 6961 (1993) https://doi.org/10.1021/j100129a008
  17. L. A. Garcia-Cerda, J. Alloy. Compd., 369, 148 (2004) https://doi.org/10.1016/j.jallcom.2003.09.089
  18. J. M. D. Coey, J. Phys. Rev. Lett., 27, 1140 (1971) https://doi.org/10.1103/PhysRevLett.27.1140