DOI QR코드

DOI QR Code

Analysis of Temperature Effects on Microbial Growth Parameters and Estimation of Food Shelf Life with Confidence Band

  • Park, Jin-Pyo (Department of Computer Engineering, Kyungnam University) ;
  • Lee, Dong-Sun (Department of Food Science and Biotechnology, Kyungnam University)
  • Published : 2008.06.30

Abstract

As a way to account for the variability of the primary model parameters in the secondary modeling of microbial growth, three different regression approaches were compared in determining the confidence interval of the temperature-dependent primary model parameters and the estimated microbial growth during storage: bootstrapped regression with all the individual primary model parameter values; bootstrapped regression with average values at each temperature; and simple regression with regression lines of 2.5% and 97.5% percentile values. Temperature dependences of converted parameters (log $q_o$, ${\mu}_{max}^{1/2}$, log $N_{max}$) of hypothetical initial physiological state, maximum specific growth rate, and maximum cell density in Baranyi's model were subjected to the regression by quadratic, linear, and linear function, respectively. With an advantage of extracting the primary model parameters instantaneously at any temperature by using mathematical functions, regression lines of 2.5% and 97.5% percentile values were capable of accounting for variation in experimental data of microbial growth under constant and fluctuating temperature conditions.

Keywords

References

  1. Sutherland J. 2003. Modelling food spoilage. In Food Preservation Techniques. Zeuthen P, Bogh-Sorensen L, eds. Woodhead Publishing, Cambridge, UK. p 451-474
  2. Schaffner DW, Labuza TP. 1997. Predictive microbiology: where are we, and where are we going? Food Technol 51: 95-99
  3. McMeekin TA, Olley J, Ratkowsky DA, Ross T. 2002. Predictive microbiology: towards the interface and beyond. Int J Food Microbiol 73: 395-407 https://doi.org/10.1016/S0168-1605(01)00663-8
  4. Baranyi J, Robinson TP, Kaloti A, Mackey BM. 1995. Predicting growth of Brochothrix thermosphacta at changing temperature. Int J Food Microbiol 27: 61-75 https://doi.org/10.1016/0168-1605(94)00154-X
  5. Bovill R, Bew J, Cook N, D'Agostino M, Wilkinson N, Baranyi J. 2000. Predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int J Food Microbiol 59: 157-165 https://doi.org/10.1016/S0168-1605(00)00292-0
  6. Huang L. 2003. Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions. Food Microbiol 20: 549-559 https://doi.org/10.1016/S0740-0020(02)00155-7
  7. Koseki S, Isobe S. 2005. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int J Food Microbiol 104: 239-248 https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
  8. Van Impe JF, Nicolai BM, Schellekens M, Martens T, Baerdemaeker JD. 1995. Predictive microbiology in a dynamic environment: a system theory approach. Int J Food Microbiol 25: 227-249 https://doi.org/10.1016/0168-1605(94)00140-2
  9. Taoukis PS, Koutsoumanis K, Nychas GJE. 1999. Use of time temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int J Food Microbiol 53: 21-31 https://doi.org/10.1016/S0168-1605(99)00142-7
  10. Corradini MG, Peleg M. 2005. Estimating non-isothermal bacterial growth in foods from isothermal experimental data. J Appl Microbiol 99: 187-200 https://doi.org/10.1111/j.1365-2672.2005.02570.x
  11. Lee DS, Hwang KJ, An DS, Park JP, Lee HJ. 2007. Model on the microbial quality change of seasoned soybean sprouts for on-line shelf life prediction. Int J Food Microbiol 18: 285-293 https://doi.org/10.1016/j.ijfoodmicro.2007.07.052
  12. Nauta MJ. 2007. Uncertainty and variability in predictive models of microorganisms in food. In Modelling Microorganisms in Food. Brul S, Van Gerwen S, Zwietering M, eds. Woodhead Publishing, Cambridge, UK. p 44-66
  13. Moreau Y, Couvert O, Thuault D. 2005. Estimation of the confidence band of bacterial growth simulation. The Sym'Previus approach. Acta Horti 674: 415-420
  14. Poschet F, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. 2003. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiol 20: 285-295 https://doi.org/10.1016/S0740-0020(02)00156-9
  15. Schaffner DW. 1994. Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth. Int J Food Microbiol 24: 309-314 https://doi.org/10.1016/0168-1605(94)90128-7
  16. Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. 2004. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math Comput Simulat 65: 231-243 https://doi.org/10.1016/j.matcom.2003.12.002
  17. Koutsoumanis K. 2001. Predictive modeling of the shelf life of fish under nonisothermal conditions. Appl Environ Microbiol 67: 1821-1829 https://doi.org/10.1128/AEM.67.4.1821-1829.2001
  18. Almonacid-Merino SF, Thomas DR, Torres JA. 1993. Numerical and statistical methodology to analyze microbial spoilage of refrigerated solid foods exposed to temperature abuse. J Food Sci 58: 914-920 https://doi.org/10.1111/j.1365-2621.1993.tb09390.x
  19. Baranyi J, Roberts TA. 1994. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23: 277-294 https://doi.org/10.1016/0168-1605(94)90157-0
  20. Davison AC, Hinkley DV. 1997. Bootstrap Methods and Their Application. Cambridge University Press, Cambridge, UK. p 261-266
  21. Motulsky H, Christopoulos A. 2004. Fitting Models to Biological Data Using Linear and Nonlinear Regression. Oxford University Press, New York. p 29-137
  22. Ratkowsky DA. 2004. Model fitting and uncertainty. In Modeling Microbial Responses in Food. McKellar RC, Lu X, eds. CRC Press, Boca Raton, FL, USA. p 151-196
  23. Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Im-pe JF. 2004. Predictive modelling of the microbial lag phase: a review. Int J Food Microbiol 94: 137-159 https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
  24. Baranyi J, Roberts TA. 1995. Mathematics of predicted food microbiology. Int J Food Microbiol 26: 199-218 https://doi.org/10.1016/0168-1605(94)00121-L

Cited by

  1. Monitoring and modelling of headspace-gas concentration changes for shelf life control of a glass packaged perishable food vol.55, pp.2, 2014, https://doi.org/10.1016/j.lwt.2013.10.018
  2. Modelling of mould/yeast growth on Korean braised lotus root cuts as a primary quality index in storage vol.20, pp.3, 2009, https://doi.org/10.1111/j.1748-0159.2009.00136.x
  3. Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions vol.13, pp.4, 2008, https://doi.org/10.3746/jfn.2008.13.4.348