DOI QR코드

DOI QR Code

Measurement of Refractive Index of Liquids by the Maximum and Minimum Deviated Laser Beam

레이저광의 최대.최소 편향법을 이용한 액체의 굴절률 측정

  • Published : 2008.06.30

Abstract

The prism spectrometer is a standard device for the measurement of refractive index; it is used in undergraduate laboratories. Typically, however, lots of attention is required in the alignment, and the accuracy of the obtained refractive index is not so high in spite of the durability of the device. The maximum and minimum deviation method, which compensates the disadvantages of the prism spectrometer, can be composed cost effectively using a length marking tape and a rotating platform. It can measure the refractive indices accurately by utilizing a wide screen. In this study, the equal sided hollow prism whose length is 26 mm was fabricated and measured the refractive indices of seven kind of liquids (pure water, $C_3H_5(OH)_2$, $CCl_4$, $C_6H_4NH_2$, $CS_2$, $C_6H_4(CH_3)_2)$ by using the prism spectrometer and maximum and minimum deviated laser beam method at the wavelengths of He-Ne laser (${\lambda}$= 632.8 nm) and YVO4 laser (${\lambda}$= 532 nm). The result shows that the data obtained by the latter method are more accurate and precise than those obtained by the former device.

프리즘 분광기는 굴절률 측정을 위한 표준 장치로, 대학교 실험실에서 사용되는 전형적인 실험 기구이지만, 정렬할 때 많은 주의가 요구되고 장치의 견고함에 비해 측정된 굴절률의 정확도는 떨어진다. 이러한 단점을 보완한 최대 최소 편향법은 회전 플랫폼과 길이 측정용 테이프로 저렴하게 장치가 구성되고 넓은 스크린을 활용하여 비교적 정확하게 굴절률을 측정할 수 있다. 본 연구에서는 한변이 26 mm인 속이 빈 등변 프리즘을 제작하여 글리세린($C_3H_5(OH)_2$), 사염화탄소($CCl_4$), 아닐린($C_6H_4NH_2$), 이황화탄소($CS_2$), 크실렌($C_6H_4(CH_3)_2$) 등의 액체를 채워, He-Ne 레이저의 파장 632.8 nm와 $YVO_4$ 레이저의 파장 532 nm에 대해 프리즘 분광기와 최대 최소법으로 이들 액체의 굴절률을 측정하였다. 측정결과 최대 최소법으로 얻어진 데이터가 프리즘분광기에 의해 얻어진 데이터보다 더 정확하고 정밀함을 확인하였다.

Keywords

References

  1. S. Singh, “Refractive Index Measurement and its Applications” Physica Scripta. Vol. 65, pp. 167-180, 2002 https://doi.org/10.1238/Physica.Regular.065a00167
  2. S. Chang and J. H. Jo et al., Introduction to Classical and Mordern Optics (Doo Yang Press, Seoul, 2003), pp. 12-17
  3. S. Waldenstrom, K. R. Naqvi, A simple accurate alternative to the minimum-deviation method for the determination of the refractive index of a prism, Am. J. Phys. 46, pp. 1009-1011, 1978 https://doi.org/10.1119/1.11417
  4. B. P. Chandra, S. C. Bhaiya, A simple accurate alternative to the minimum deviation method of determining the refractive index of liquids, Am. J. Phys. 51, pp. 160-161, 1983 https://doi.org/10.1119/1.13314
  5. A. Fedman, Refraction Through a prism, Am. J. Phys. 51, pp. 929-931, 1983 https://doi.org/10.1119/1.13379
  6. D. V. Sathe, Fixed angle of incidentce method for the refractive index of a prism, Am. J. Phys. 53, pp. 488-490, 1985 https://doi.org/10.1119/1.14209
  7. E. R. Van Keuren, Refractive index measurement using total internal reflection, Am. J. Phys. 73, pp. 611-614, 2005 https://doi.org/10.1119/1.1866099
  8. F. El-Ghussein, J. M. Wrobel, M. B. Kruger, “Dispersion measurements with minimum and maximum deviated beams”, Am. J. Phys. Vol. 74(10), pp. 888-891, 2006 https://doi.org/10.1119/1.2209245
  9. E. Hecht, Optics 2nd ed. (Addison Wesley Publishing Company, Inc., New York, 1987) pp. 231-233
  10. G. S. Monk, Light Principles and Experiments (McGraw- Hill, New York, 1937)
  11. C. H. Palmer, Optics:Experiments and Demonstrations (The Johns Hopkins University Press, 1962), p.147
  12. D. R. Lide, Handbook of Chemistry and Physics 73rd Edition (CRC Press, BocaRaton, 1994) chap.10, pp. 300-301