DOI QR코드

DOI QR Code

Polymer Waveguide Based Refractive Index Sensor Using Polarimetric Interference

편광 간섭을 이용한 광도파로 기반의 표면 굴절률 센서

  • Son, Geun-Sik (Department of Electronic Engineering, Kwangwoon University) ;
  • Kwon, Soon-Woo (School of Advanced Materials science & Engineering, Sungkyunkwan University) ;
  • Kim, Woo-Kyung (Nano Bio Research center, Korea Electronics Technology Institute) ;
  • Yang, Woo-Seok (Nano Bio Research center, Korea Electronics Technology Institute) ;
  • Lee, Hyung-Man (Nano Bio Research center, Korea Electronics Technology Institute) ;
  • Lee, Han-Young (Nano Bio Research center, Korea Electronics Technology Institute) ;
  • Lee, Sung-Dong (Infopia) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • 손근식 (광운대학교 전자공학과) ;
  • 권순우 (성균관대학교 신소재공학과) ;
  • 김우경 (전자부품연구원 바이오 의료기기연구센터) ;
  • 양우석 (전자부품연구원 바이오 의료기기연구센터) ;
  • 이형만 (전자부품연구원 바이오 의료기기연구센터) ;
  • 이한영 (전자부품연구원 바이오 의료기기연구센터) ;
  • 이성동 (인포피아) ;
  • 이상신 (광운대학교 전자공학과)
  • Published : 2008.06.30

Abstract

A novel refractive index sensor, which consists of polymer channel waveguide overlaid with $TiO_2$ thin film, is demonstrated. To evaluate the fabricated sensor, we measured the polarimetric interference induced by concentration change of injected glycerol solution. Our experimental results show that thicker $TiO_2$ film improves the sensitivity of the polarimetric interferometer. For the fabricated waveguide with a 20 nm thick $TiO_2$ film, the measured index change to lead phase variation of $2{\pi}$ is $1.8{\times}10^{-3}$.

본 논문에서는 폴리머 광도파로 상부에 $TiO_2$(Titanium dioxide)박막이 증착된 굴절률 센서를 구현하였다. 제작된 센서를 이용하여 글리세롤의 굴절률 변화에 따른 출력광의 편광 간섭 변화를 측정하였다. 또한 박막 두께에 따른 편광 간섭의 민감도 변화를 확인하고, 수치해석 결과와 비교하였다. 특히 $TiO_2$가 20 nm 증착된 광도파로에서 $2{\pi}$의 위상차를 갖는 굴절률 변화는 $1.8{\times}10^{-3}$이다.

Keywords

References

  1. R. D. Harris, B. J. Luff, J. S. Wilkinson, J. Piehler, A. Brecht, G. Gauglitz, and R. A. Abuknesha, “Integrated optical surface plasmon resonance immunoprobe for simazine detection,” Biosens. Bioelec., vol. 14, pp. 377-386, 1999 https://doi.org/10.1016/S0956-5663(99)00014-7
  2. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor,” IEEE Photon. Technol. Lett., vol. 17, no. 6, pp. 1253-1255, 2005 https://doi.org/10.1109/LPT.2005.846953
  3. E. F. Schipper, A. M. Brugman, C. Dominguez, L. M. Lechuga, R. P. H. Kooyman, and J. Greve, “The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology,” Sens. Actuat. B, vol. 40, pp. 147-153, 1997 https://doi.org/10.1016/S0925-4005(97)80254-7
  4. M. Corke, J. D. C. Jones, A. D. Kersey, and D. A. Jackson, “Combined michelson and polarimetric fibre-optic interferometric sensor,” Electron. Lett., vol. 21, no. 4, pp. 148- 149, 1985 https://doi.org/10.1049/el:19850105
  5. Z. M. Qi, K. Itoh, M. Murabayashi, and C. R. Lavers, “Characterization and application of a channel-planar composite waveguide,” Opt. Lett., vol. 25, no. 19, pp. 1427- 1429, 2000 https://doi.org/10.1364/OL.25.001427
  6. Z. M. Qi, I. Honma, and H. Zhou, “Tin-diffused glass slab waveguides locally covered with tapered thin $TiO_2$ films for application as a polarimetric interference sensor with an improved performance,” Anal. Chem., vol. 77, pp. 1163-1166, 2005 https://doi.org/10.1021/ac048863o
  7. Optical Electronics (Yariv, USA, 1991)
  8. T. Itoh, Numerical Techniques For Microwave And Millimeter-Wave Passive Structures (Wiley-interscience, Canada, 1989)
  9. S. Y. Lee, L. X. Chen, J. B. Choo, E. K. Lee, and S. H. Lee, “Highly sensitive biological analysis using optical microfluidic sensor,” J. Opt. Soc. Kor., vol. 10, no. 3, pp. 130-142, 2006 https://doi.org/10.3807/JOSK.2006.10.3.130
  10. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt., vol. 46, no. 18, pp. 3811-3820, 2007 https://doi.org/10.1364/AO.46.003811
  11. P. R. Cooper, “Refractive-Index measurements of liquids used in conjunction with optical fibers,” Appl. Opt., vol. 22, no. 19, pp. 3070-3072, 1983 https://doi.org/10.1364/AO.22.003070