DOI QR코드

DOI QR Code

Highly Sensitive Integrated Photonic Temperature Sensor Exploiting a Polymeric Microring Resonator

폴리머 마이크로링 공진기를 이용한 고감도 집적광학형 온도센서

  • Lee, Hak-Soon (Department of Electronic Engineering, Kwangwoon University) ;
  • Kim, Gun-Duk (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2008.06.30

Abstract

A highly sensitive integrated photonic temperature sensor was proposed and developed incorporating a polymeric microring resonator. The change in the ambient temperature was estimated by observing the shift in the resonant wavelength of the resonator induced via the thermooptic effect. For the purpose of enhancing its sensitivity, the sensor was built by implementing a polymeric resonator exhibiting a high thermooptic coefficient on a silicon substrate with a small coefficient of thermal expansion. For the range of from $20^{\circ}C$ to $30^{\circ}C$ near the room temperature, the fabricated sensor yielded a sensitivity of as high as 165 ${\pm}/^{\circ}C$ and a resolution of better than $0.1^{\circ}C$. And its performance was found to be hardly affected by the variation in the refractive index of the target analyte, which was applied to the surface of the sensor. It is hence expected that the sensor could be integrated with other refractormetric optical sensors, thereby compensating for the fatal error caused by the change in the ambient temperature.

본 논문에서는 폴리머 마이크로링 공진기 기반의 고감도 집적광학형 온도센서를 제안하고 구현하였다. 이 센서는 열광학효과로 인한 공진기 소자의 공진파장의 이동으로부터 주변 온도 변화를 측정한다. 열팽창계수가 작은 실리콘 기판 위에 열광학계수가 큰 폴리머를 도입하여 공진기 센서를 제작함으로써 센서의 감도를 향상시켰다. 상온 부근 $20^{\circ}C{\sim}30^{\circ}C$의 범위에서 얻어진 온도센서의 감도는 약 -165 ${\pm}/^{\circ}C$였고, 온도분해능은 $0.1^{\circ}C$이하였다. 그리고 제작된 온도센서의 동작 특성은 표면에 놓여진 분석대상물의 굴절률 변화에 거의 영향을 받지 않음을 확인하였다. 따라서 제작된 센서는 다른 광센서에 집적되어 주변 온도 변화로 인하여 유발되는 오차를 효과적으로 보정할 수 있을 것으로 기대된다.

Keywords

References

  1. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase- modulated Mach-Zehnder interferometer system,” Sens. Actuators B Chem., vol. 61, no. 1, pp. 100-127, 1999 https://doi.org/10.1016/S0925-4005(99)00283-X
  2. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sens. Actuators B, Chem., vol. 113, no. 2, pp. 774-781, 2006 https://doi.org/10.1016/j.snb.2005.07.029
  3. A. Brandenburg, “Differential refractometry by an integratedoptical Young interferometer,” Sens. Actuators B, Chem., vol. 39, no 1, pp. 266-271, 1997 https://doi.org/10.1016/S0925-4005(97)80216-X
  4. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 1, pp. 134-142, 2006 https://doi.org/10.1109/JSTQE.2005.862945
  5. A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 1, pp. 148-155, 2006 https://doi.org/10.1109/JSTQE.2005.863003
  6. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Exp., vol. 15, no. 12, pp. 7610-7615, 2007 https://doi.org/10.1364/OE.15.007610
  7. 김건덕,손근식,이학순,김기도,이상신,“수직형 폴리머 마이크로링 공진기 기반의 글루코스 바이오 센서,” 한국광학회지, 제19권, 제2호, pp. 127-131, 2008
  8. Y. Liu, P. Hering, and M. O. Scully, “An integrated optical sensor for measuring glucose concentration,” Appl. Phys., B 54, pp. 18-23, 1992 https://doi.org/10.1007/BF00331729
  9. S. L. Tsao, P. C. Peng, and S. G. Lee, “A novel MMI-MI SOI temperature sensor,” in Proc. 13th Ann. Meeting IEEE Lasers and Electro-Optics Society, Rio Grande, Puerto Rico, Nov. 13-16, 2000, vol. 2, pp. 464-465, Paper WH5
  10. A. Irace and G. Breglio, “All-silicon optical temperature sensor based on multi-mode interference,” Opt. Exp., vol. 11, no. 22, pp. 2807-2812, 2003 https://doi.org/10.1364/OE.11.002807
  11. M. Remouche, R. Mokdad, A. Chakari, and P. Meyrueis, “Intrinsic integrated optical temperature sensor based on waveguide bend loss,” Optics & Laser Technology, vol. 39, no. 7, pp. 1454-1460, 2007 https://doi.org/10.1016/j.optlastec.2006.09.015
  12. X. Zhang and X. Li, “Design, fabrication and characterization of optical microring sensors on metal substrates,” J. Micromech. Microeng., vol. 18, no. 1, 015025(7pp), 2008 https://doi.org/10.1088/0960-1317/18/1/015025
  13. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett., vol. 36, no. 4, pp. 321-322, 2000 https://doi.org/10.1049/el:20000340
  14. ZPU and LFR polymers are available from Chem Optics Co., Republic of Korea. Available: http://chemoptics.co.kr

Cited by

  1. Design and Fabrication of Triple-coupler Ring Resonator Filter vol.22, pp.1, 2011, https://doi.org/10.3807/KJOP.2011.22.1.040