DOI QR코드

DOI QR Code

최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합

Concrete Optimum Mixture Proportioning Based on a Database Using Convex Hulls

  • 이방연 (한국과학기술원 건설및환경공학과) ;
  • 김재홍 (한국과학기술원 건설및환경공학과) ;
  • 김진근 (한국과학기술원 건설및환경공학과)
  • Lee, Bang-Yeon (Dept. Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jae-Hong (Dept. Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin-Keun (Dept. Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 발행 : 2008.10.31

초록

이 연구에서는 한정된 데이터베이스를 바탕으로 콘크리트 물성 예측 모델을 만들어 최적 배합을 구할 때, 탐색 범위를 한정된 데이터베이스로 제안함으로써 보다 신뢰성 있는 콘크리트 배합을 제시할 수 있는 기법을 제안하였다. 제안한 기법은 각 구성 재료의 가능한 모든 영역을 포함하는 데이터베이스를 구축하지 않고 최적화 과정에서 탐색 범위를 한정된 데이터베이스로 제안함으로써 콘크리트 물성 예측 모델이 신뢰성을 확보할 수 있게 된다. 이 연구에서 이러한 영역을 유효영역으로 정의 하였다. 제안한 기법은 유전자 알고리즘, 인공신경회로망, 그리고 최소 볼록 집합을 이용하여 구현하였으며, 이 방법의 타당성을 검증하기 위하여 주어진 강도 조건을 만족하면서 최저의 가격으로 제조할 수 있는 배합을 찾는 최적화 문제에 적용하였으며 검증 실험을 수행하였다. 실험 결과 데이터베이스의 영역 특성을 반영하는 제안한 기법을 통하여 보다 정확하고 신뢰성 있는 최적 배합을 찾을 수 있음을 확인하였다.

This paper presents an optimum mixture design method for proportioning a concrete. In the proposed method, the search space is constrained as the domain defined by the minimal convex region of a database, instead of the available range of each component and the ratio composed of several components. The model for defining the search space which is expressed by the effective region is proposed. The effective region model evaluates whether a mix-proportion is effective on processing for optimization, yielding highly reliable results. Three concepts are adopted to realize the proposed methodology: A genetic algorithm for the optimization; an artificial neural network for predicting material properties; and a convex hull for evaluating the effective region. And then, it was applied to an optimization problem wherein the minimum cost should be obtained under a given strength requirement. Experimental test results show that the mix-proportion obtained from the proposed methodology using convex hulls is found to be more accurate and feasible than that obtained from a general optimum technique that does not consider this aspect.

키워드

참고문헌

  1. Yeh, I. -C., "Design of High-Performance Concrete Mixture Using Neural Networks and Nonlinear Programming," Journal of Computing in Civil Engineering, Vol. 13, No. 1, 1999, pp. 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
  2. Yeh, I. -C., "Computer-Aided Design for Optimum Concrete Mixtures," Cement and Concrete Composites, Vol. 29, 2007, pp. 193-202. https://doi.org/10.1016/j.cemconcomp.2006.11.001
  3. Lim, C. H., Yoon, Y. S., and Kim, J. H., "Genetic Algorithm in Mix Proportioning of High-Performance Concrete," Cement and Concrete Research, Vol. 34, 2004, pp. 409-420. https://doi.org/10.1016/j.cemconres.2003.08.018
  4. Flood, I. and Kartam, N., "Neural Networks in Civil Engineering. I: Principles and Understanding," Journal of Computing in Civil Engineering, Vol. 8, No. 2, 1994, pp. 132-148.
  5. 이방연, 김재홍, 김진근, "데이터베이스의 영역 특성을 고려한 콘크리트 최적 배합 선정 기법," 한국콘크리트학 회 봄학술발표회 논문집, 18권, 1호, 2006, pp. 621-624.
  6. 이방연, 김재홍, 김진근, 이성태, "유효 영역 판별 모델 에 따른 데이터베이스 기반 콘크리트 최적 배합 선정," 한국콘크리트학회 가을학술발표회 논문집, 18권, 2호, 2006. 11, pp. 909-913.
  7. Thomas, H. C., Charles, E. L., Ronald, L. R., and Clifford, S., Introduction to Algorithms, 2nd ed., MIT Press, pp. 947-957.
  8. Noguchi, T., A Study on the Mechanical Properties of High- Strength Concrete, Doctoral Dissertation, Tokyo University, 1995.
  9. Tomosawa, F. and Noguchi, T., "Relationship between Compressive Strength and Modulus of Elasticity of High- Strength Concrete," In: Proceedings of the Third International Symposium on Utilization of High Strength Concrete, Lillehammer, Norway, 1993, pp. 1247-1254.
  10. Dias, W. P. S. and Pooliyadda, S. P., "Neural Networks for Predicting Properties of Concretes with Admixtures," Construction and Building Materials, Vol. 15, 2001, pp. 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
  11. Kim, J. I., Kim, D. K., Feng, M. Q., and Yazdani, F. Y., "Application of Neural Networks for Estimation of Concrete Strength," Journal of Materials in Civil Engineering, Vol. 16, No. 3, 2004, pp. 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
  12. Kim, D. K., Lee, J. J., Lee, J. H., and Chang, S. K., "Application of Probabilistic Neural Networks for Prediction of Concrete Strength," Journal of Materials in Civil Engineering, Vol. 17, No. 3, 2005, pp. 353-362. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(353)
  13. Lai, S. and Sera, M., "Concrete Strength Prediction by Means of Neural Network," Construction and Building Materials, Vol. 11, No. 2, 1997, pp. 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
  14. Lee, S. C., "Prediction of Concrete Strength Using Artificial Neural Networks," Engineering Structures, Vol. 25, 2003, pp. 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X
  15. Ni, H. G. and Wang, J. Z. "Prediction of Compressive Strength of Concrete by Neural Networks," Cement and Concrete Research, Vol. 30, 2000, pp. 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
  16. Oztas, A., Pala, M., Özbay, E., Kanca, E., Çaglar, N., and Bhatti, M. A., "Predicting the Compressive Strength and Slump of High Strength Concrete Using Neural Network," Construction and Building Materials, Vol. 20, No. 9, 2005, pp. 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
  17. Yeh, I. -C., "Design of High-Performance Concrete Mixture Using Neural Networks and Nonlinear Programming," Journal of Computing in Civil Engineering, Vol. 13, No. 1, 1999, pp. 36-42. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:1(36)
  18. Moody, J. E. and Yarvin, N., "Networks with Learned Unit Response Functions," In: Moody, J.E., Hanson, S.J., Lippmann, R.P., editors. Advances in Neural Information Processing Systems 4, Morgan Kaufmann Publishers, 1992, pp. 1048-1055.
  19. Hecht-Nielsen. R., "Theory of the Backpropogation Neural Network," In Proceedings of International Joint Conference on Neural Networks, Washington, D.C., USA: IEEE, Vol. I, 1989, pp. 593-605.
  20. Barron, A. R., "Universal Approximation Bounds for Superpositions of a Sigmoidal Function," IEEE Transactions of Information Theory, Vol. 39, No. 3, 1993, pp. 930-945. https://doi.org/10.1109/18.256500
  21. Krogh, A. and Hertz, J. A., "A Simple Weight Decay Can Improve Generalization," In: Moody, J. E., Hanson, S. J. and Lippmann, R. P., Editors. Advances in Neural Information Processing Systems 4, Morgan Kaufmann Publishers, 1992, pp. 950-957.
  22. Dias, W. P. S. and Pooliyadda, S. P., "Neural Networks for Predicting Properties of Concretes with Admixtures," Construction and Building Materials, Vol. 15, 2001, pp. 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X
  23. Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. T., "The Quickhull Algorithm for Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4, 1996, pp. 469-483. https://doi.org/10.1145/235815.235821
  24. Haupt, R. L. and Haupt, S. E., Practical Genetic Algorithms, New York, Wiley Interscience, 1998.

피인용 문헌

  1. Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder vol.23, pp.4, 2011, https://doi.org/10.4334/JKCI.2011.23.4.487