The Effect of Salt and pH on the Phase Transition Behaviors of pH and Temperature-Responsive Poly(N,N-diethylacrylamide-co-methylacrylic acid)

  • Liu, Tonghuan (College of Chemistry and Chemical Engineering, Lanzhou University) ;
  • Fang, Jian (College of Chemistry and Chemical Engineering, Lanzhou University) ;
  • Zhang, Yaping (College of Chemistry and Chemical Engineering, Lanzhou University) ;
  • Zeng, Zhengzhi (College of Chemistry and Chemical Engineering, Lanzhou University)
  • Published : 2008.12.31

Abstract

A series of pH and temperature-responsive (N,N-diethylacrylamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis, Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) $^1H$, $^{13}C$ and LLS. The effects of salt and pH on the phase transition behaviors of the copolymers were investigated by uv. With increasing NaCl concentration, significant salt effects on their phase transition behaviors were observed. UV spectroscopic studies showed that the phase transition became faster with increasing NaCl concentration. In addition, the phase transition behaviors of copolymers were sensitive to pH. The pH and temperature sensitivity of these copolymers would make an interesting drug delivery system.

Keywords

References

  1. Y. H. Bae, T. Okano, and S. W. Kim, J. Control. Release, 9, 271 (1989) https://doi.org/10.1016/0168-3659(89)90096-5
  2. G. Anna, H. B. You, J. Harvey, F. Jan, and W. K. Sung, Macromolecules, 27, 4167 (1994) https://doi.org/10.1021/ma00093a018
  3. J. Kopecek, J. Vacik, and D. Lim, J. Polym. Sci. Polym. Chem. Ed., 9, 2801 (1971) https://doi.org/10.1002/pol.1971.150091005
  4. H. Park and J. R. Robinson, J. Control. Release, 2, 47 (1985) https://doi.org/10.1016/0168-3659(85)90032-X
  5. S. R Eisenberg and A. J.Grodzinski, J. Membr. Sci., 19, 173 (1984) https://doi.org/10.1016/S0376-7388(00)80207-0
  6. I. Kwon, Y. H. Bae, T. Okano, and S. W. Kim, Nature, 354, 291 (1991) https://doi.org/10.1038/354291a0
  7. J. Ricka and T. Tanaka, Macromolecules, 17, 2916 (1984) https://doi.org/10.1021/ma00142a081
  8. M. Irie, Adv. Polym. Sci., 110, 49 (1993) https://doi.org/10.1007/BFb0021128
  9. C. S. Brazel and N. A. Peppas, Macromolecules, 28, 8016 (1995) https://doi.org/10.1021/ma00128a007
  10. M. J. Snowden, D. Thomas, and B. Vincent, Analyst, 118, 1367 (1993) https://doi.org/10.1039/an9931801367
  11. G. H. Chen and A. S. Hoffman, Bioconjugate. Chem., 4, 509 (1993) https://doi.org/10.1021/bc00024a013
  12. H. Bae, T. Okano, and S. W. Kim, Macromol. Chem. Rapid. Commun., 9, 185 (1988) https://doi.org/10.1002/marc.1988.030090312
  13. A. S. Hoffman, Controlled drug delivery challenges and strategies, Intelligent, polymers, K. Park, Ed., Washington, DC, ACS, 1997, pp 485-498
  14. N. A. Peppas, Curr. Opin. Colloid Interface Sci., 2, 531 (1997) https://doi.org/10.1016/S1359-0294(97)80103-3
  15. X. Y. Wu and P. I. Lee, Pharm. Res., 10, 1544 (1993) https://doi.org/10.1023/A:1018900114881
  16. J. Huang and X. Y. Wu, J. Polym. Sci. Polym. Chem., 37, 2667 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990715)37:14<2667::AID-POLA42>3.0.CO;2-J
  17. J. Moselhy, X. Y. Wu, R. Nicholov, and K. Kodaria, J. Biomater. Sci. Polym. Ed., 11, 123 (2000) https://doi.org/10.1163/156856200743616
  18. C. Choi, M. K. Jang, and J. W. Nah, Macromol. Res., 15, 623 (2007) https://doi.org/10.1007/BF03218942
  19. K. Zhang and X. Y. Wu, Biomaterials, 25, 5281 (2004) https://doi.org/10.1016/j.biomaterials.2003.12.032
  20. H. D. Han, D. E. Nam, D. H. Seo, T. W. Kim, and B. C. Shin, Macromol. Res., 12, 507 (2004) https://doi.org/10.1007/BF03218435
  21. L. Sherwood, Human physiology from cells to systems, 3rd ed., Belmont, CA, Wadsworth Publishing Company, 1997, pp 121-165
  22. G. R. Martin and R. K. Jain, Cancer Res., 54, 5670 (1994)
  23. M. Panayiotou and R. Freitag, Polymer, 46, 6777 (2005) https://doi.org/10.1016/j.polymer.2005.06.060
  24. Z. Ying, K. Juan, and T. Tian, Polymer, 47, 7702 (2006) https://doi.org/10.1016/j.polymer.2006.08.056
  25. J. S. Yoo, M. S. Kim, and D. S. Lee, Macromol. Res., 14, 117 (2006) https://doi.org/10.1007/BF03219078
  26. I. Idziak, D. Avoce, and D. Lessard, Macromolecules, 32, 1260 (1999) https://doi.org/10.1021/ma981171f
  27. S. Fujishige, K. Kubota, and I. Ando, J. Phys. Chem., 93, 3311 (1989) https://doi.org/10.1021/j100345a085
  28. S. B. Lee, S. C. Song, J. I. Jin, and Y. S. Sohn, Macromolecules, 32, 7820 (1999) https://doi.org/10.1021/ma990645n
  29. X. M. Liu, Y. Y. Yang, and K. W. Leong, J. Colloid Interf. Sci., 266, 295 (2003) https://doi.org/10.1016/S0021-9797(03)00691-X
  30. X. M. Liu, K. P. Pallathadka, Y. Y. Yang, S. Y. Chow, and C. He, Biomaterials, 25, 2619 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.028
  31. F. Garret-Flaudy and R. Freitag, J. Polym. Sci. Polym. Chem., 38, 4218 (2000) https://doi.org/10.1002/1099-0518(20001201)38:23<4218::AID-POLA70>3.0.CO;2-6
  32. L. H. Gan, W. Cai, and K. C. Tam, Eur. Polym. J., 37, 1773 (2001) https://doi.org/10.1016/S0014-3057(01)00061-1
  33. M. S. Jones, Eur. Polym. J., 35, 795 (1999) https://doi.org/10.1016/S0014-3057(98)00066-4